python读取csv文件,根据“地区”“价格”绘制“各区域房屋总价箱线图”示例代码
时间: 2023-08-13 11:05:36 浏览: 199
好的,以下是使用Python读取CSV文件并绘制各区域房屋总价箱线图的示例代码:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 读取CSV文件
data = pd.read_csv('house_prices.csv', encoding='utf-8')
# 按地区分组,计算总价
grouped_data = data.groupby('地区').sum()['价格']
# 绘制箱线图
plt.boxplot(grouped_data)
plt.title('各区域房屋总价箱线图')
plt.xlabel('地区')
plt.ylabel('总价')
plt.show()
```
请注意,这里假设CSV文件中有“地区”和“价格”两列,并且使用UTF-8编码。你需要根据实际情况进行调整。
相关问题
python读取csv文件,根据“地区”“价格”绘制多个“各区域房屋总价箱线图”示例代码
好的,以下是示例代码:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 读取csv文件
df = pd.read_csv('house_prices.csv')
# 按地区分组
grouped = df.groupby('地区')
# 绘制各区域房屋总价箱线图
for name, group in grouped:
plt.boxplot(group['价格'], labels=[name])
plt.title(name + '房屋总价箱线图')
plt.ylabel('价格')
plt.show()
```
需要注意的是,代码中的`house_prices.csv`是需要替换成你自己的csv文件名,同时需要确保csv文件中有“地区”和“价格”这两个列。此外,还需要安装pandas和matplotlib库。
python读取csv文件,根据“地区”和“价格”一列,绘制多个同一地区的房屋总价箱线图,绘制多个同一地区的房屋总价箱线图放入同一个图中,即绘制各地区房屋总价对比分析箱线图
以下是一个示例代码:
```python
import pandas as pd
import matplotlib.pyplot as plt
# 读取csv文件
df = pd.read_csv('house_prices.csv')
# 按地区分组
grouped = df.groupby('地区')
# 绘制各地区房屋总价对比分析箱线图
fig, axs = plt.subplots(len(grouped), 1, figsize=(8, 10), sharey=True)
for i, (name, group) in enumerate(grouped):
axs[i].boxplot(group['价格'], labels=[name])
axs[i].set_title(name + '房屋总价箱线图')
axs[i].set_ylabel('价格')
plt.tight_layout()
plt.show()
```
代码中的`house_prices.csv`需要替换成你自己的csv文件名,同时需要确保csv文件中有“地区”和“价格”这两个列。此外,代码中使用了`subplots`函数创建了多个子图,每个子图对应一个地区的箱线图,最后使用`tight_layout`函数调整子图之间的间距。你也可以根据需要进行修改,例如修改图的大小、添加x轴标签、y轴标签等。
阅读全文
相关推荐














