Transfomer 函数展示
时间: 2023-06-23 12:09:06 浏览: 72
Transformer 是一种基于自注意力机制的神经网络模型,常用于进行序列到序列的任务,如机器翻译、文本摘要等。下面是 Transformer 中常用的一些函数的展示:
1. Multi-Head Attention
```
def multi_head_attention(query, key, value, mask=None, num_heads=8):
d_model = query.shape[-1]
d_k = d_model // num_heads
Q = tf.keras.layers.Dense(d_model)(query)
K = tf.keras.layers.Dense(d_model)(key)
V = tf.keras.layers.Dense(d_model)(value)
Q_ = tf.concat(tf.split(Q, num_heads, axis=-1), axis=0)
K_ = tf.concat(tf.split(K, num_heads, axis=-1), axis=0)
V_ = tf.concat(tf.split(V, num_heads, axis=-1), axis=0)
attention = tf.matmul(Q_, tf.transpose(K_, [0, 2, 1]))
attention /= tf.sqrt(tf.cast(d_k, tf.float32))
if mask is not None:
attention += (mask * -1e9)
attention = tf.nn.softmax(attention, axis=-1)
output = tf.matmul(attention, V_)
output = tf.concat(tf.split(output, num_heads, axis=0), axis=-1)
return output
```
2. Position-wise Feed-Forward Network
```
def position_wise_feed_forward(x, d_model, dff):
x = tf.keras.layers.Dense(dff, activation='relu')(x)
x = tf.keras.layers.Dense(d_model)(x)
return x
```
3. Encoder Layer
```
class EncoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(EncoderLayer, self).__init__()
self.mha = MultiHeadAttention(d_model, num_heads)
self.ffn = PositionWiseFeedForward(d_model, dff)
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
def call(self, x, training, mask=None):
attn_output = self.mha(x, x, x, mask)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(x + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
out2 = self.layernorm2(out1 + ffn_output)
return out2
```
4. Decoder Layer
```
class DecoderLayer(tf.keras.layers.Layer):
def __init__(self, d_model, num_heads, dff, rate=0.1):
super(DecoderLayer, self).__init__()
self.mha1 = MultiHeadAttention(d_model, num_heads)
self.mha2 = MultiHeadAttention(d_model, num_heads)
self.ffn = PositionWiseFeedForward(d_model, dff)
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = tf.keras.layers.Dropout(rate)
self.dropout2 = tf.keras.layers.Dropout(rate)
self.dropout3 = tf.keras.layers.Dropout(rate)
def call(self, x, enc_output, training, look_ahead_mask=None, padding_mask=None):
attn1 = self.mha1(x, x, x, look_ahead_mask)
attn1 = self.dropout1(attn1, training=training)
out1 = self.layernorm1(attn1 + x)
attn2 = self.mha2(out1, enc_output, enc_output, padding_mask)
attn2 = self.dropout2(attn2, training=training)
out2 = self.layernorm2(attn2 + out1)
ffn_output = self.ffn(out2)
ffn_output = self.dropout3(ffn_output, training=training)
out3 = self.layernorm3(ffn_output + out2)
return out3
```
阅读全文