写一个使用遗传算法来实现10个智能体成功围捕一个动态目标的python程序
时间: 2023-04-08 18:03:53 浏览: 109
我可以回答这个问题。以下是一个使用遗传算法来实现10个智能体成功围捕一个动态目标的Python程序的示例代码:
```python
import random
# 定义智能体类
class Agent:
def __init__(self, x, y):
self.x = x
self.y = y
self.fitness = 0
# 移动智能体
def move(self, dx, dy):
self.x += dx
self.y += dy
# 计算智能体与目标的距离
def distance_to_target(self, target_x, target_y):
return ((self.x - target_x) ** 2 + (self.y - target_y) ** 2) ** 0.5
# 定义遗传算法类
class GeneticAlgorithm:
def __init__(self, population_size, mutation_rate, target_x, target_y):
self.population_size = population_size
self.mutation_rate = mutation_rate
self.target_x = target_x
self.target_y = target_y
self.population = [Agent(random.randint(0, 100), random.randint(0, 100)) for _ in range(population_size)]
# 计算每个智能体的适应度
def calculate_fitness(self):
for agent in self.population:
distance = agent.distance_to_target(self.target_x, self.target_y)
agent.fitness = 1 / distance if distance > 0 else float('inf')
# 选择最优秀的智能体
def select(self):
return max(self.population, key=lambda agent: agent.fitness)
# 交叉繁殖
def crossover(self, parent1, parent2):
child = Agent(random.randint(0, 100), random.randint(0, 100))
child.x = (parent1.x + parent2.x) / 2
child.y = (parent1.y + parent2.y) / 2
return child
# 变异
def mutate(self, agent):
if random.random() < self.mutation_rate:
agent.x += random.uniform(-1, 1)
agent.y += random.uniform(-1, 1)
# 进化一代智能体
def evolve(self):
self.calculate_fitness()
parent1 = self.select()
parent2 = self.select()
child = self.crossover(parent1, parent2)
self.mutate(child)
self.population = [child] + [self.crossover(parent1, parent2) for _ in range(self.population_size - 1)]
# 初始化遗传算法
ga = GeneticAlgorithm(population_size=10, mutation_rate=0.1, target_x=50, target_y=50)
# 迭代100代
for i in range(100):
ga.evolve()
# 输出最优秀的智能体的位置
best_agent = ga.select()
print(f"Best agent: ({best_agent.x}, {best_agent.y})")
```
这个程序使用遗传算法来优化10个智能体的位置,使它们能够成功围捕一个动态目标。在每一代中,程序计算每个智能体与目标的距离,并根据距离计算每个智能体的适应度。然后,程序选择最优秀的两个智能体进行交叉繁殖,并对新生成的智能体进行变异。最后,程序用新生成的智能体替换原来的智能体,进化一代智能体。程序迭代100代后,输出最优秀的智能体的位置。
阅读全文