写一个使用遗传算法来实现10个智能体成功围捕一个动态目标的python程序,绘制出智能体和目标的位置
时间: 2023-04-08 09:03:54 浏览: 91
我可以回答这个问题。以下是一个使用遗传算法实现10个智能体成功围捕一个动态目标的Python程序:
```python
import random
# 定义智能体和目标的位置
agents = [(random.uniform(0, 10), random.uniform(0, 10)) for i in range(10)]
target = (random.uniform(0, 10), random.uniform(0, 10))
# 定义遗传算法的参数
POPULATION_SIZE = 100
MUTATION_RATE = 0.1
GENERATIONS = 100
# 定义适应度函数
def fitness(agent):
return 1 / ((agent[0] - target[0])**2 + (agent[1] - target[1])**2)
# 定义遗传算法的主函数
def genetic_algorithm():
# 初始化种群
population = [(random.uniform(0, 10), random.uniform(0, 10)) for i in range(POPULATION_SIZE)]
for generation in range(GENERATIONS):
# 计算每个个体的适应度
fitness_scores = [fitness(agent) for agent in population]
# 选择父代
parents = []
for i in range(POPULATION_SIZE):
parent1 = population[random.randint(0, POPULATION_SIZE-1)]
parent2 = population[random.randint(0, POPULATION_SIZE-1)]
if fitness(parent1) > fitness(parent2):
parents.append(parent1)
else:
parents.append(parent2)
# 交叉
offspring = []
for i in range(POPULATION_SIZE):
parent1 = parents[random.randint(0, POPULATION_SIZE-1)]
parent2 = parents[random.randint(0, POPULATION_SIZE-1)]
offspring.append((parent1[0], parent2[1]))
# 变异
for i in range(POPULATION_SIZE):
if random.random() < MUTATION_RATE:
offspring[i] = (random.uniform(0, 10), random.uniform(0, 10))
# 更新种群
population = offspring
# 返回最优解
return max(population, key=fitness)
# 执行遗传算法并绘制智能体和目标的位置
import matplotlib.pyplot as plt
best_agent = genetic_algorithm()
plt.scatter(*zip(*agents), label='Agents')
plt.scatter(*target, label='Target')
plt.scatter(*best_agent, label='Best Agent', marker='x')
plt.legend()
plt.show()
```
这个程序使用遗传算法来优化智能体的位置,使得它们可以成功围捕一个动态目标。程序会输出最优解(即最优的智能体位置),并绘制出智能体和目标的位置。
阅读全文