fParticleGun = new G4ParticleGun(n_particle); 为什么是创建了指针

时间: 2024-04-09 19:32:10 浏览: 20
在这段代码中,使用`new`关键字创建了一个`G4ParticleGun`对象,并将其返回的指针赋值给了`fParticleGun`。这是因为指针可以方便地管理动态分配的对象。 在C++中,`new`操作符返回一个指向动态分配对象的指针。通过将指针赋值给一个对象指针变量,可以方便地访问和操作这个对象。同时,使用指针可以方便地释放动态分配的内存,以避免内存泄漏。 在这里,`fParticleGun`被声明为一个指向`G4ParticleGun`对象的指针。通过将`new G4ParticleGun(n_particle)`返回的指针赋值给`fParticleGun`,我们可以通过`fParticleGun`来访问和操作这个动态分配的对象。 需要注意的是,当不再需要这个动态分配的对象时,应该使用`delete`关键字释放内存。例如,可以使用`delete fParticleGun;`来释放之前动态分配的`G4ParticleGun`对象。这样可以确保在不需要对象时,释放内存并避免内存泄漏。
相关问题

G4int n_particle = 1; fParticleGun = new G4ParticleGun(n_particle);

在这段代码中,`G4int n_particle = 1;`是定义了一个名为`n_particle`的整数变量,并将其初始化为1。 然,使用`new`关键字在上创建了一个`G4ParticleGun`对象将`n_particle`作为参数传递构造函数。这样做是为了在创建`G4ParticleGun`对象时,指定生成粒子的数量。 通过这段代码,创建了一个名为`fParticleGun`的指向`G4ParticleGun`对象的指针,并将其初始化为一个新创建的对象。这个对象可以用于生成粒子,并且生成的粒子数量由`n_particle`确定。

PrimaryGeneratorAction::PrimaryGeneratorAction() { G4int n_particle = 1; fParticleGun = new G4ParticleGun(n_particle); // default particle kinematic G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable(); G4String particleName; G4ParticleDefinition* particle = particleTable->FindParticle(particleName="gamma"); fParticleGun->SetParticleDefinition(particle); fParticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.)); fParticleGun->SetParticleEnergy(6.*MeV); }

这是PrimaryGeneratorAction类中的构造函数PrimaryGeneratorAction()的实现代码。 在该构造函数中,首先创建了一个G4ParticleGun对象fParticleGun,用于生成粒子。 接着,默认设置了生成粒子的动力学参数。使用G4ParticleTable类的GetParticleTable()函数获取粒子表,然后通过粒子名称"gamma"在粒子表中查找对应的粒子定义,并将其设置为生成粒子的类型。 然后,设置生成粒子的动量方向为(0, 0, 1),即沿着z轴正方向。设置生成粒子的能量为6 MeV。 通过这些设置,构造函数初始化了PrimaryGeneratorAction对象中的fParticleGun成员变量,使其具备生成指定类型、动力学参数的粒子的功能。

相关推荐

function [Xo,particle]=particle_filter_u2(particle,y0,B,R,Q,N,k,u_Q,ResampleStrategy) for ii=1:N for jj=1:N Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn+gamrnd(1,1))+sqrt(Q)*randn+gamrnd(1,1); % Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn)+sqrt(Q)*randn;%采样获得N个粒子 ypart =detection_equation(Xsetpre(ii,jj),k); %预测值 vhat = y0 - ypart; weight(ii,jj)=1/(det(R)^(1/2))*exp(-1/2*vhat'*inv(R)*vhat)+ 1e-99; end %归一化 wsumii = sum(weight(ii,:)); weight_ii=weight(ii,:)./wsumii; Xset_ii=Xsetpre(ii,:); weight_pre=weight; particle_pre=Xsetpre; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_ii); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_ii); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_ii); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_ii); %多项式重采样 end %U(jj) %x(ii) weight_ii=weight_ii(outIndex); part_ii=Xset_ii(outIndex); particle(ii,:)=part_ii; weight(ii,:)=weight_ii; X_ii(ii)=mean(part_ii); end wsumjj = sum(sum(weight),2); weight_u=weight./wsumjj; weight_jj=(sum(weight_u,2))'; Xset_jj=X_ii; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_jj); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_jj); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_jj); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_jj); %多项式重采样 end weight_jj=weight_jj(outIndex); part_jj=Xset_jj(outIndex); Xo=mean(part_jj);

这段代码为什么进行二级重采样 for ii=1:N for jj=1:N Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn+gamrnd(1,1))+sqrt(Q)*randn+gamrnd(1,1); % Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn)+sqrt(Q)*randn;%采样获得N个粒子 ypart =detection_equation(Xsetpre(ii,jj),k); %预测值 vhat = y0 - ypart; weight(ii,jj)=1/(det(R)^(1/2))*exp(-1/2*vhat'*inv(R)*vhat)+ 1e-99; end %归一化 wsumii = sum(weight(ii,:)); weight_ii=weight(ii,:)./wsumii; Xset_ii=Xsetpre(ii,:); weight_pre=weight; particle_pre=Xsetpre; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_ii); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_ii); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_ii); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_ii); %多项式重采样 end %U(jj) %x(ii) weight_ii=weight_ii(outIndex); part_ii=Xset_ii(outIndex); particle(ii,:)=part_ii; weight(ii,:)=weight_ii; X_ii(ii)=mean(part_ii); end wsumjj = sum(sum(weight),2); weight_u=weight./wsumjj; weight_jj=(sum(weight_u,2))'; Xset_jj=X_ii; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_jj); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_jj); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_jj); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_jj); %多项式重采样 end weight_jj=weight_jj(outIndex); part_jj=Xset_jj(outIndex); Xo=mean(part_jj)

这段代码两次重采样分别是对什么 for ii=1:N for jj=1:N Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B*(sqrt(u_Q)*randn+gamrnd(1,1))+sqrt(Q)randn+gamrnd(1,1); % Xsetpre(ii,jj) = process_equation(particle(ii,jj),k)+B(sqrt(u_Q)*randn)+sqrt(Q)*randn;%采样获得N个粒子 ypart =detection_equation(Xsetpre(ii,jj),k); %预测值 vhat = y0 - ypart; weight(ii,jj)=1/(det(R)^(1/2))exp(-1/2vhat'*inv(R)*vhat)+ 1e-99; end %归一化 wsumii = sum(weight(ii,:)); weight_ii=weight(ii,:)./wsumii; Xset_ii=Xsetpre(ii,:); weight_pre=weight; particle_pre=Xsetpre; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_ii); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_ii); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_ii); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_ii); %多项式重采样 end %U(jj) %x(ii) weight_ii=weight_ii(outIndex); part_ii=Xset_ii(outIndex); particle(ii,:)=part_ii; weight(ii,:)=weight_ii; X_ii(ii)=mean(part_ii); end wsumjj = sum(sum(weight),2); weight_u=weight./wsumjj; weight_jj=(sum(weight_u,2))'; Xset_jj=X_ii; % 重采样 if ResampleStrategy==1 outIndex = randomR(weight_jj); %随机重采样 elseif ResampleStrategy==2 outIndex = residualR(weight_jj); %残差重采样 elseif ResampleStrategy==3 outIndex = systematicR(weight_jj); %系统重采样 elseif ResampleStrategy==4 outIndex = multinomialR(weight_jj); %多项式重采样 end weight_jj=weight_jj(outIndex); part_jj=Xset_jj(outIndex); Xo=mean(part_jj)

class PSO_VRP: def __init__(self, num_particles, num_iterations, num_customers, max_capacity, max_distance, distances, demands): self.num_particles = num_particles self.num_iterations = num_iterations self.num_customers = num_customers self.max_capacity = max_capacity self.max_distance = max_distance self.distances = distances self.demands = demands self.global_best_fitness = float('inf') self.global_best_position = [0] * num_customers self.particles = [] def initialize_particles(self): for _ in range(self.num_particles): particle = Particle(self.num_customers, self.max_capacity, self.max_distance) self.particles.append(particle) def update_particles(self): for particle in self.particles: for i in range(len(particle.position)): r1 = random.random() r2 = random.random() particle.velocity[i] = 0.5 * particle.velocity[i] + 2 * r1 * (particle.best_position[i] - particle.position[i]) + 2 * r2 * (self.global_best_position[i] - particle.position[i]) particle.velocity[i] = int(particle.velocity[i]) if particle.velocity[i] < 0: particle.velocity[i] = 0 elif particle.velocity[i] > self.num_customers - 1: particle.velocity[i] = self.num_customers - 1 particle.position = [(particle.position[i] + particle.velocity[i]) % (self.num_customers + 1) for i in range(len(particle.position))] def update_global_best(self): for particle in self.particles: if particle.best_fitness < self.global_best_fitness: self.global_best_fitness = particle.best_fitness self.global_best_position = particle.best_position.copy() def solve(self): self.initialize_particles() for _ in range(self.num_iterations): for particle in self.particles: particle.evaluate_fitness(self.distances, self.demands) self.update_global_best() self.update_particles() return self.global_best_position, self.global_best_fitness添加注释

最新推荐

recommend-type

chromedriver-win64_121.0.6123.0.zip

chromedriver-win64_121.0.6123.0.zip
recommend-type

保险服务门店新年工作计划PPT.pptx

在保险服务门店新年工作计划PPT中,包含了五个核心模块:市场调研与目标设定、服务策略制定、营销与推广策略、门店形象与环境优化以及服务质量监控与提升。以下是每个模块的关键知识点: 1. **市场调研与目标设定** - **了解市场**:通过收集和分析当地保险市场的数据,包括产品种类、价格、市场需求趋势等,以便准确把握市场动态。 - **竞争对手分析**:研究竞争对手的产品特性、优势和劣势,以及市场份额,以进行精准定位和制定有针对性的竞争策略。 - **目标客户群体定义**:根据市场需求和竞争情况,明确服务对象,设定明确的服务目标,如销售额和客户满意度指标。 2. **服务策略制定** - **服务计划制定**:基于市场需求定制服务内容,如咨询、报价、理赔协助等,并规划服务时间表,保证服务流程的有序执行。 - **员工素质提升**:通过专业培训提升员工业务能力和服务意识,优化服务流程,提高服务效率。 - **服务环节管理**:细化服务流程,明确责任,确保服务质量和效率,强化各环节之间的衔接。 3. **营销与推广策略** - **节日营销活动**:根据节庆制定吸引人的活动方案,如新春送福、夏日促销,增加销售机会。 - **会员营销**:针对会员客户实施积分兑换、优惠券等策略,增强客户忠诚度。 4. **门店形象与环境优化** - **环境设计**:优化门店外观和内部布局,营造舒适、专业的服务氛围。 - **客户服务便利性**:简化服务手续和所需材料,提升客户的体验感。 5. **服务质量监控与提升** - **定期评估**:持续监控服务质量,发现问题后及时调整和改进,确保服务质量的持续提升。 - **流程改进**:根据评估结果不断优化服务流程,减少等待时间,提高客户满意度。 这份PPT旨在帮助保险服务门店在新的一年里制定出有针对性的工作计划,通过科学的策略和细致的执行,实现业绩增长和客户满意度的双重提升。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果

![MATLAB图像去噪最佳实践总结:经验分享与实用建议,提升去噪效果](https://img-blog.csdnimg.cn/d3bd9b393741416db31ac80314e6292a.png) # 1. 图像去噪基础 图像去噪旨在从图像中去除噪声,提升图像质量。图像噪声通常由传感器、传输或处理过程中的干扰引起。了解图像噪声的类型和特性对于选择合适的去噪算法至关重要。 **1.1 噪声类型** * **高斯噪声:**具有正态分布的加性噪声,通常由传感器热噪声引起。 * **椒盐噪声:**随机分布的孤立像素,值要么为最大值(白色噪声),要么为最小值(黑色噪声)。 * **脉冲噪声
recommend-type

InputStream in = Resources.getResourceAsStream

`Resources.getResourceAsStream`是MyBatis框架中的一个方法,用于获取资源文件的输入流。它通常用于加载MyBatis配置文件或映射文件。 以下是一个示例代码,演示如何使用`Resources.getResourceAsStream`方法获取资源文件的输入流: ```java import org.apache.ibatis.io.Resources; import java.io.InputStream; public class Example { public static void main(String[] args) {
recommend-type

车辆安全工作计划PPT.pptx

"车辆安全工作计划PPT.pptx" 这篇文档主要围绕车辆安全工作计划展开,涵盖了多个关键领域,旨在提升车辆安全性能,降低交通事故发生率,以及加强驾驶员的安全教育和交通设施的完善。 首先,工作目标是确保车辆结构安全。这涉及到车辆设计和材料选择,以增强车辆的结构强度和耐久性,从而减少因结构问题导致的损坏和事故。同时,通过采用先进的电子控制和安全技术,提升车辆的主动和被动安全性能,例如防抱死刹车系统(ABS)、电子稳定程序(ESP)等,可以显著提高行驶安全性。 其次,工作内容强调了建立和完善车辆安全管理体系。这包括制定车辆安全管理制度,明确各级安全管理责任,以及确立安全管理的指导思想和基本原则。同时,需要建立安全管理体系,涵盖安全组织、安全制度、安全培训和安全检查等,确保安全管理工作的系统性和规范性。 再者,加强驾驶员安全培训是另一项重要任务。通过培训提高驾驶员的安全意识和技能水平,使他们更加重视安全行车,了解并遵守交通规则。培训内容不仅包括交通法规,还涉及安全驾驶技能和应急处置能力,以应对可能发生的突发情况。 此外,文档还提到了严格遵守交通规则的重要性。这需要通过宣传和执法来强化,以降低由于违反交通规则造成的交通事故。同时,优化道路交通设施,如改善交通标志、标线和信号灯,可以提高道路通行效率,进一步增强道路安全性。 在实际操作层面,工作计划中提到了车辆定期检查的必要性,包括对刹车、转向、悬挂、灯光、燃油和电器系统的检查,以及根据车辆使用情况制定检查计划。每次检查后应记录问题并及时处理,以确保车辆始终处于良好状态。 最后,建立车辆安全信息管理系统也是关键。通过对车辆事故和故障情况进行记录和分析,可以为安全管理提供数据支持,以便及时发现问题,预防潜在风险,并对事故进行有效处理和责任追究。 这份车辆安全工作计划全面覆盖了从车辆本身到驾驶员行为,再到道路环境的诸多方面,旨在构建一个全方位、多层次的车辆安全管理体系,以降低交通事故风险,保障道路交通安全。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力

![MATLAB图像去噪行业应用:从医疗到遥感,解锁图像去噪的无限潜力](https://img-blog.csdnimg.cn/img_convert/3aa5d0402a313c17c3c9ffa85b40f683.png) # 1. MATLAB图像去噪概述 **1.1 图像去噪的重要性** 图像去噪是图像处理中一项至关重要的任务,它旨在从图像中去除不需要的噪声,从而提高图像的质量和可理解性。图像噪声可能来自各种来源,如传感器缺陷、环境干扰和数据传输错误。 **1.2 MATLAB图像去噪的优势** MATLAB是一个强大的技术计算环境,提供了一系列图像去噪算法和工具。MATLA
recommend-type

使用pyrhon编写mapreduce

MapReduce是一种用于处理大规模数据集的编程模型和算法。它通常用于分布式计算环境中,可以高效地处理大量数据并实现并行计算。在Python中,我们可以使用Hadoop Streaming来编写MapReduce程序。 下面是使用Python编写MapReduce的基本步骤: 1. Map阶段: - 编写一个mapper函数,该函数接收输入数据并将其转换为键值对的形式。 - 使用标准输入(sys.stdin)读取输入数据,并使用标准输出(sys.stdout)输出键值对。 2. Reduce阶段: - 编写一个reducer函数,该函数接收来自mapper函数输出的键
recommend-type

ipqc工作总结PPT.pptx

"这是一份关于IPQC(在制品质量控制)的工作总结PPT,涵盖了IPQC的角色定义、工作总结、质量月报、质量提升计划、团队发展计划以及未来展望。" IPQC,全称为InProcess Quality Control,在制品质量控制,是制造过程中至关重要的一个环节。IPQC的主要职责在于通过抽检和检验在制品,确保生产出的产品符合预设的质量标准和客户期望。他们的工作包括但不限于: 1. **质量检验与控制**:对在制品进行定期抽样检验,以确认产品质量是否达标。 2. **环境与设备监控**:检查生产现场的环境条件和设备运行状态,确保符合生产要求。 3. **关键控制点检查**:在生产的关键阶段进行严格检查,及时发现问题。 4. **不合格品管理**:对不合格品进行标识、隔离,并追踪问题的解决过程。 5. **制定检验计划**:根据生产计划和产品标准,制定相应的检验程序和标准。 6. **数据收集与分析**:记录检验数据,通过分析找出潜在问题,提出改善建议。 在工作总结部分,IPQC强调了实时监控生产过程,确保每个环节都符合质量标准。他们定期抽检产品,快速反馈问题,并进行异常分析与改进,防止问题重复出现。此外,IPQC还负责对新员工进行培训,提高团队协作和管理,以提升整体工作效率和质量水平。 在IPQC质量月报中,提到了质量目标的达成情况。虽然目标完成率达到了98%,但仍有2%的差距,主要是由于员工操作失误和质量监控不足造成的。为了改进,IPQC计划加强员工培训,提高操作技能,增强质量意识,并增加检查频率,以更严格地控制产品质量。 对于未来的展望,IPQC可能会进一步强化团队建设,优化工作流程,持续提升产品质量,以达到更高的客户满意度。团队发展计划可能包括更系统的员工培训、更高效的沟通机制以及更有激励性的管理策略。 这份PPT详细呈现了IPQC在确保产品质量、处理异常情况、提高团队绩效等方面的工作内容和挑战,同时也展现了IPQC团队对质量提升和团队发展的持续关注和努力。