from skimage.metrics import structural_similarity 源码
时间: 2023-10-30 15:06:01 浏览: 164
由于 `skimage.metrics` 模块是基于 Scikit-Image 实现的,源码是使用 Python 编写的。你可以在 Scikit-Image 的 GitHub 仓库中找到 `metrics` 模块的源码:
https://github.com/scikit-image/scikit-image/blob/main/skimage/metrics/_structural_similarity.py
在该文件中,定义了 `structural_similarity` 函数,该函数实现了结构相似性算法(SSIM)的计算。算法的实现过程包括将图像转换为灰度图像、计算均值和方差、构造高斯加权窗口、计算互相关系数等步骤。函数的输入参数包括两幅图像以及一些可选参数,函数的返回值是一个表示结构相似性的浮点数。
相关问题
skimage.metrics中的structural_similarity函数介绍
skimage.metrics中的structural_similarity函数是计算两张图像之间结构相似性的函数,它是基于MSSIM(Mean Structural Similarity Index)算法的实现。它计算两张图像之间的结构相似性,并返回一个0到1之间的相似度分数,其中1表示两张图像结构完全相同,0表示两张图像结构完全不同。
该函数的函数原型如下:
```
skimage.metrics.structural_similarity(im1, im2, *, win_size=None, gradient=False, data_range=None, multichannel=None, gaussian_weights=False, full=False, **kwargs)
```
其中,im1和im2分别是待比较的两张图像;win_size是滑动窗口的大小,如果不指定,则默认为31x31;gradient表示是否计算梯度,默认为False;data_range表示像素值的范围,默认为图像数据类型的最大值;multichannel表示是否是多通道图像,默认为None;gaussian_weights表示是否使用高斯加权平均值,默认为False;full表示是否返回每个像素的相似度分数,默认为False。
下面是一个使用structural_similarity函数的例子:
```python
import skimage.metrics as metrics
from skimage import io
img1 = io.imread('image1.jpg', as_gray=True)
img2 = io.imread('image2.jpg', as_gray=True)
similarity = metrics.structural_similarity(img1, img2)
print("The similarity between the two images is:", similarity)
```
这段代码会读取两张灰度图像,并计算它们之间的结构相似度分数,最后输出相似度分数的值。需要注意的是,该函数只适用于灰度图像或者RGB图像的灰度化处理。如果需要比较彩色图像之间的相似性,则需要对每个颜色通道分别计算相似度。
pycharm将import scipy.fftpack as fp from skimage.io import imread from skimage.color import rgb2gray, gray2rgb import matplotlib.pyplot as plt from skimage.draw import rectangle_perimeter import numpy as np import cv2 import numpy as np import matplotlib.pylab as plt from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import from mpl_toolkits.axes_grid1 import make_axes_locatable from skimage.metrics import peak_signal_noise_ratio, structural_similarity from sklearn.metrics import mean_squared_error, mean_absolute_error from matplotlib.ticker import LinearLocator, FormatStrFormatter from scipy.fftpack import dct, idct import cv2 as cv def dct2(a): return dct(dct(a, axis=0, norm='ortho'), axis=1, norm='ortho') def idct2(a): return idct(idct(a, axis=0, norm='ortho'), axis=1, norm='ortho') im = rgb2gray(imread('2.jpg')) imF = dct2(im) im1 = idct2(imF) print(np.allclose(im, im1))优化一下,能控制压缩率
好的,你可以考虑使用基于DCT的图像压缩算法,通过调整量化表来控制压缩比率和图像质量之间的平衡。具体来说,你可以将DCT系数进行量化,然后设置一个量化参数Q,通过调整Q的大小来控制压缩比率和图像质量之间的平衡。一般来说,Q的值越大,压缩比率就越小,图像质量就越好,反之亦然。
下面是一个简单的基于DCT的图像压缩代码示例,你可以根据需要进行修改和优化:
```python
import numpy as np
import cv2
from scipy.fftpack import dct, idct
def dct2(a):
return dct(dct(a, axis=0, norm='ortho'), axis=1, norm='ortho')
def idct2(a):
return idct(idct(a, axis=0, norm='ortho'), axis=1, norm='ortho')
def compress_image(im, Q):
# 对图像进行DCT变换
imF = dct2(im)
# 设置量化矩阵
QM = np.array([[16, 11, 10, 16, 24, 40, 51, 61],
[12, 12, 14, 19, 26, 58, 60, 55],
[14, 13, 16, 24, 40, 57, 69, 56],
[14, 17, 22, 29, 51, 87, 80, 62],
[18, 22, 37, 56, 68, 109, 103, 77],
[24, 35, 55, 64, 81, 104, 113, 92],
[49, 64, 78, 87, 103, 121, 120, 101],
[72, 92, 95, 98, 112, 100, 103, 99]])
# 进行量化
imQ = np.round(imF / (QM * Q))
# 对图像进行IDCT变换
im1 = idct2(imQ)
# 限制像素值在0到255之间
im1 = np.clip(im1, 0, 255)
im1 = im1.astype(np.uint8)
return im1
# 读取图像
im = cv2.imread('lena.png', cv2.IMREAD_GRAYSCALE)
# 设置量化参数Q
Q = 50
# 进行图像压缩
im1 = compress_image(im, Q)
# 计算压缩比率
cr = im.size / (im1.size * np.ceil(np.log2(Q)))
# 计算PSNR和SSIM
psnr = peak_signal_noise_ratio(im, im1)
ssim = structural_similarity(im, im1, multichannel=False)
# 输出结果
print('压缩比率: {:.2f}'.format(cr))
print('PSNR: {:.2f}'.format(psnr))
print('SSIM: {:.2f}'.format(ssim))
```
在上面的代码中,你可以调整量化参数Q的大小来控制压缩比率和图像质量之间的平衡。同时,通过计算PSNR和SSIM等指标,可以对压缩后的图像质量进行评估。
阅读全文