int16 Kalman_filter(int16 ADC_Value)//卡尔曼滤波 { float LastData; float NowData; float kalman_adc; static float kalman_adc_old=0; static float P1; //后验估计协方差 static float Q=2; //系统协方差 static float R=100; //测量协方差 static float Kg=0; //卡尔曼增益 static float P=1; //先验估计协方差 //预测过程 NowData=(float)ADC_Value; LastData=kalman_adc_old; P=P1+Q; //更新过程 Kg=P/(P+R); kalman_adc = LastData+Kg*(NowData-kalman_adc_old); P1=(1-Kg)*P; P=P1; kalman_adc_old=kalman_adc; return (int16)kalman_adc; }
时间: 2024-01-08 22:02:37 浏览: 118
这是一个基于卡尔曼滤波算法的函数,用于对传感器采集到的ADC值进行滤波处理。函数输入参数为ADC值,输出为滤波后的ADC值。
在函数中,定义了一些静态变量,包括后验估计协方差P1、系统协方差Q、测量协方差R、卡尔曼增益Kg、先验估计协方差P。其中,系统协方差Q和测量协方差R需要根据具体应用场景进行调整。
函数中实现了卡尔曼滤波算法的两个步骤:预测过程和更新过程。预测过程用于根据上一时刻的状态预测当前时刻的状态,先验估计协方差P用于描述系统状态的不确定性。更新过程用于根据当前时刻的测量值和预测值,计算出滤波后的状态值和后验估计协方差P1。卡尔曼增益Kg用于权衡预测值和测量值的权重。
最后,将滤波后的ADC值转换为int16类型并返回。
相关问题
import pandas as pd # 导入pandas工具库 import matplotlib.pyplot as plt pd.set_option('display.max_columns', 1000) pd.set_option('display.max_rows', 1000) pd.set_option('display.max_colwidth', 1000) import numpy as np import matplotlib.pyplot as plt """ Q 系统噪声 R 测量噪声 X(k|k-1) 上一次状态预测结果 X(k-1|k-1) 上一时刻的最优预测值 P(k|k-1) X(k|k-1)对应的convariance协方差 P(k-1|k-1) X(k-1|k-1) 对应的convariance协方差 """ x_last = 0 p_last = 0 Q = 0.01 # 系统噪声 R = 0.5 # 测量噪声 def kalman(z_measure, x_last=0, p_last=0, Q=0.018, R=0.0542): x_mid = x_last p_mid = p_last + Q kg = p_mid / (p_mid + R) x_now = x_mid + kg * (z_measure - x_mid) p_now = (1 - kg) * p_mid p_last = p_now x_last = x_now return x_now, p_last, x_last path = 'C:/Users/asus/Desktop/第4章作业/卡尔曼滤波数据.xlsx' data_B = pd.read_excel(path, header=None) for j in range(8): xj = list(data_B.iloc[::, j]) yj=[] for i in range(len(xj)): pred, p_last, x_last = kalman(xj[i], x_last, p_last, Q, R) yj.append(pred) ax1 = plt.subplot(1,2,1) ax2 = plt.subplot(1,2,2) plt.sca(ax1) plt.plot(xj, color="g") # 测量值 plt.sca(ax2) plt.plot(yj, color="r") # 预测值 plt.show() 把上面的pyton代码转为matlab代码
以下是将上述Python代码转换为MATLAB代码的版本:
```matlab
% 导入pandas工具库
% 设置显示选项
format long
x_last = 0;
p_last = 0;
Q = 0.01; % 系统噪声
R = 0.5; % 测量噪声
function [x_now, p_last, x_last] = kalman(z_measure, x_last, p_last, Q, R)
x_mid = x_last;
p_mid = p_last + Q;
kg = p_mid / (p_mid + R);
x_now = x_mid + kg * (z_measure - x_mid);
p_now = (1 - kg) * p_mid;
p_last = p_now;
x_last = x_now;
end
path = 'C:\Users\asus\Desktop\第4章作业\卡尔曼滤波数据.xlsx';
data_B = xlsread(path);
figure;
for j = 1:8
xj = data_B(:, j);
yj = zeros(size(xj));
for i = 1:length(xj)
[pred, p_last, x_last] = kalman(xj(i), x_last, p_last, Q, R);
yj(i) = pred;
end
subplot(1,2,1);
plot(xj, 'g'); hold on; % 测量值
subplot(1,2,2);
plot(yj, 'r'); hold on; % 预测值
end
hold off;
```
请注意,这段MATLAB代码的绘图部分使用了`subplot`和`hold`函数来创建多个
卡尔曼滤波c语言代码
以下是一个使用C语言编写的卡尔曼滤波算法的示例代码:
```c
#include "stdio.h"
#include "stdlib.h"
#include "math.h"
#define kal_Q 0.001 /*过程噪声协方差,Q增大,动态响应变快,收敛稳定性变坏*/
#define kal_R 0.36 /*观测噪声协方差,R增大,动态响应变慢,收敛稳定性变好*/
double Kalman(double measure, int op_flg) {
double x_mid, kg, p_mid;
static double x_last = 0, p_last = 0;
double x_now, p_now;
if(op_flg) /*非初始化*/
{
x_mid = x_last;
p_mid = p_last + kal_Q;
kg = p_mid / (p_mid + kal_R);
x_now = x_mid + kg * (measure - x_mid);
p_now = (1 - kg) * p_mid;
p_last = p_now;
x_last = x_now;
}
else {
x_last = measure;
p_last = kal_Q;
}
return x_now;
}
int main() {
float z_real = {5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5}; //此处替换成实际传感器采集数据,采集数据填充可以做成滑动的,先入先出
float z_measure, x_now;
int i;
Kalman(z_real<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [卡尔曼滤波C语言代码](https://download.csdn.net/download/limbom/10779110)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *2* [卡尔曼滤波--C语言实现](https://blog.csdn.net/lijigang100/article/details/128827555)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
- *3* [C语言实现卡尔曼滤波(附完整源码)](https://blog.csdn.net/it_xiangqiang/article/details/130780336)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"]
[ .reference_list ]
阅读全文