label_font = { 'weight': 'bold', 'size': 22, 'family': 'SimSun' } colorbar_label_font_C = { 'weight': 'bold', 'size': 18, 'family': 'SimSun' } colorbar_label_font_E = { 'weight': 'bold', 'size': 18, 'family': 'Times New Roman' }

时间: 2023-12-23 21:03:31 浏览: 253
这段代码定义了三个字体样式的字典,别是`label_font``colorbar_label_font`和`colorbar_label_font_E`。每个字典包含了字体的粗细(weight)、大小(size)和字体族(family)等属性。其中,`label_font`使用宋体(SimSun)字体,大小为22,粗细为粗体;`colorbar_label_font_C`和`colorbar_label_font_E`分别使用宋体和Times New Roman字体,大小为18,粗细为粗体。这些字体样式可以在绘图过程中应用于相应的标签或文本。
相关问题

我要把feature_type_mean放在横轴其他位置,请增加代码,#这种初始化操作可以用来创建一个空的数据结构,用于后续存储和填充数据。在这种情况下,DataFrame的所有元素被初始化为0,准备接收进一步的数据填充。 filter_features = pd.DataFrame(0, index=filter_names, columns=feature_type_names, ) for key in c: for filter_name in filter_names: for feature_type_name in feature_type_names: if filter_name in key and feature_type_name in key: # print(filter_name, feature_type_name, key, c[key]) filter_features.loc[filter_name, feature_type_name] += c[key] filter_features['filter_mean'] = filter_features.mean(axis = 1) filter_features.loc['feature_type_mean'] = filter_features.mean(axis = 0) # %% plt.figure(figsize=(8, 12), dpi=300) sns.set_style('white', {'font.sans-serif': ['simsun', 'Times New Roman'], "size": 6}) ax = sns.heatmap(filter_features, # .apply(np.log1p), #vmin=5, vmax=17, fmt=".3f", annot=False, cmap="YlOrBr",#"vlag",#"YlOrBr", # cmap="RdBu_r", annot_kws={"size": 6}, square=True ) # label_y = ax.get_yticklabels() # plt.setp(label_y, rotation=45) # label_x = ax.get_xticklabels() # plt.setp(label_x, rotation=45) # plt.tick_params(labelsize=6) plt.show()

To move the 'feature_type_mean' column to a different position in the DataFrame, you can use the `reindex` method of pandas DataFrame. Here's the modified code: ``` filter_features = pd.DataFrame(0, index=filter_names, columns=feature_type_names) for key in c: for filter_name in filter_names: for feature_type_name in feature_type_names: if filter_name in key and feature_type_name in key: filter_features.loc[filter_name, feature_type_name] += c[key] filter_features['filter_mean'] = filter_features.mean(axis=1) # Calculate the mean of each column and store it in a new DataFrame feature_type_mean = filter_features.mean(axis=0) feature_type_mean_df = pd.DataFrame(feature_type_mean, columns=['feature_type_mean']) # Reorder the columns in the DataFrame filter_features = pd.concat([feature_type_mean_df, filter_features.drop(columns=['feature_type_mean'])], axis=1) plt.figure(figsize=(8, 12), dpi=300) sns.set_style('white', {'font.sans-serif': ['simsun', 'Times New Roman'], "size": 6}) ax = sns.heatmap(filter_features, fmt=".3f", annot=False, cmap="YlOrBr", annot_kws={"size": 6}, square=True) plt.show() ``` In this modified code, the `feature_type_mean` column is calculated separately and stored in a new DataFrame `feature_type_mean_df`. Then, the `concat()` method is used to combine this DataFrame with the original `filter_features` DataFrame, but with the columns reordered. Finally, the heatmap is plotted using the modified `filter_features` DataFrame.

<table width="100%" id="tablefirst" style= "margin-bottom:2px; margin-top:2px; font-family: 宋体,SimSun; font-size: 11px;font-weight:bold;"> <tr > %20 </tr> <tr > <td colspan='8' ><img width="90%" height="2" style="float: center;" src=':/images/black.png'/></td> </tr> %16 </table>中<tr > <td colspan='8' ><img width="90%" height="2" style="float: center;" src=':/images/black.png'/></td> </tr>宽度无法占满全屏

这个问题可能是由于图片的宽度设置为90%,而不是100%所导致的。你可以将该行代码修改为: ``` <td colspan='8'><img style="display: block; width: 100%;" src=':/images/black.png'/></td> ``` 这样图片就会占满整个单元格的宽度,从而使整个表格占满全屏。同时,你也可以将 table 标签的 width 属性设置为 100% 来确保表格的宽度占满全屏。修改后的代码如下所示: ``` <table width="100%" id="tablefirst" style="margin-bottom:2px; margin-top:2px; font-family: 宋体,SimSun; font-size: 11px; font-weight:bold;"> <tr> <td colspan='8' style="text-align:center;">%20</td> </tr> <tr> <td colspan='8'><img style="display: block; width: 100%;" src=':/images/black.png'/></td> </tr> <tr> <td colspan='8' style="text-align:center;">%16</td> </tr> </table> ``` 希望这个解决方案能够帮助到你。
阅读全文

相关推荐

import cv2 import face_recognition import numpy as np from PIL import Image, ImageDraw,ImageFont video_capture = cv2.VideoCapture(r'C:/Users/ALIENWARE/123.mp4')#如果输入是(0)为摄像头输入 #现输入为MP4进行识别检测人脸 first_image = face_recognition.load_image_file("1.jpg") first_face_encoding = face_recognition.face_encodings(first_image)[0] Second_image = face_recognition.load_image_file("2.jpg") Second_face_encoding = face_recognition.face_encodings(Second_image)[0] third_image = face_recognition.load_image_file("3.jpg") third_face_encoding = face_recognition.face_encodings(third_image)[0] inside_face_encodings = [first_face_encoding,Second_face_encoding,third_face_encoding] inside_face_names = ['A','B','C'] face_locations = [] face_encodings = [] face_names = [] process_this_frame = True while True: ret, frame = video_capture.read() small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] if process_this_frame: face_locations = face_recognition.face_locations(rgb_small_frame) face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations) face_names = [] for face_encoding in face_encodings: matches = face_recognition.compare_faces(inside_face_encodings, face_encoding) name = '未录入人脸' if True in matches: first_match_index = matches.index(True) name = inside_face_names[first_match_index] face_names.append(name) process_this_frame = not process_this_frame for (top, right, bottom, left), name in zip(face_locations, face_names): top *= 4 right *= 4 bottom *= 4 left *= 4 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2) img_pil = Image.fromarray(frame) draw = ImageDraw.Draw(img_pil) fontStyle = ImageFont.truetype("C:/Windows/Fonts/simsun.ttc", 32, encoding="utf-8") draw.text((left + 6, bottom - 6), name, (0, 200, 0), font=fontStyle) frame = np.asarray(np.array(img_pil)) cv2.imshow('face_out', frame) if cv2.waitKey(1) & 0xFF == ord('q'): #退出需要按下Q键否则内核会崩溃 break video_capture.release() cv2.destroyAllWindows()

void Program_dynamic1(char* ip,int port,LPCWSTR str) { unsigned long playlist = create_playlist(64, 32,8536); cout<<"create_playlist:"<<playlist<<endl; unsigned long program = create_program(L"program_1",_TEXT_T("0xff000000")); cout<<"create_program:"<<program<<endl; int dynamic_type = 1; int display_effects = 52; int display_speed = 10; int stay_time = 0; int gif_flag = 0; LPCWSTR bg_color = L"0xff000000"; LPCWSTR color = L"0xffff0000"; LPCWSTR font_attributes = L"normal"; LPCWSTR font = L"SimSun"; LPCWSTR align_h = L"0"; LPCWSTR align_v = L"0"; LPCWSTR ff=L"1.txt"; TCHAR szFilePath[MAX_PATH + 1]={0}; GetModuleFileName(NULL, szFilePath, MAX_PATH); (_tcsrchr(szFilePath, L'\\'))[1] = 0; LPCWSTR f = wcscat(szFilePath,ff); unsigned long dynamic_area = create_dynamic(); cout<<"create_dynamic:"<<dynamic_area<<endl; int err = add_dynamic_unit(dynamic_area, dynamic_type, display_effects, display_speed, stay_time, _TEXT_T("1.txt"), gif_flag, bg_color, 12, font, color, font_attributes, align_h, align_v, 0, 0, 0,_TEXT_T(""),_TEXT_T("")); err = add_dynamic_unit(dynamic_area, 0, display_effects, display_speed, stay_time, _TEXT_T("1.bmp"), gif_flag, bg_color, 12, font, color, font_attributes, _TEXT_T("0"), _TEXT_T("0"), 0, 0, 0,_TEXT_T(""),_TEXT_T("")); cout<<"add_dynamic_unit:"<<err<<endl; err = add_dynamic(program, dynamic_area,0, 0, 0, 64, 32, L"", 0, L"", 100); cout<<"add_dynamic:"<<err<<endl; delete_dynamic(dynamic_area); LPCWSTR m_aging_start_time = _T("2018-12-01"); LPCWSTR m_aging_stop_time = _T("2018-12-30"); LPCWSTR m_period_ontime = _T("15:14:00"); LPCWSTR m_period_offtime = _T("15:15:00"); err = add_program_in_playlist(playlist, program, 0, 10, m_aging_start_time, m_aging_stop_time, m_period_ontime, m_period_offtime, 127); cout<<"add_program_in_playlist:"<<err<<endl; err = update_dynamic(ip, port, _TEXT_T("guest"), _TEXT_T("guest"), playlist, _TEXT_T(""), 1, 0); cout<<"update_dynamic:"<<err<<endl; cancel_send_program(playlist); delete_playlist(playlist); }

大家在看

recommend-type

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip

新项目基于YOLOv8的人员溺水检测告警监控系统python源码(精确度高)+模型+评估指标曲线+精美GUI界面.zip 【环境配置】 1、下载安装anaconda、pycharm 2、打开anaconda,在anaconda promt终端,新建一个python3.9的虚拟环境 3、激活该虚拟空间,然后pip install -r requirements.txt,安装里面的软件包 4、识别检测['Drowning', 'Person out of water', 'Swimming'] 【运行操作】 以上环境配置成功后,运行main.py,打开界面,自动加载模型,开始测试即可 可以检测本地图片、视频、摄像头实时画面 【数据集】 本项目使用的数据集下载地址为: https://download.csdn.net/download/DeepLearning_/89398245 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
recommend-type

SPiiPlus ACSPL+ Command & Variable Reference Guide.pdf

SPiiPlus ACSPL+驱动器编程命令说明书。驱动器编程命令语言说明。可参看驱动器编程。SPiiPlus ACSPL+ Command & Variable Reference Guide
recommend-type

论文研究 - 基于UPQC的电能质量模糊控制器的实现。

本文介绍了有关统一电能质量调节器(UPQC)的总体检查,以在电气系统的配电级别上激发电能问题。 如今,电力电子研究已经增加了电能质量研究的重要性,对于具体示例,定制功率设备(CPD)和柔性交流输电位置(FACTS)设备而言,这非常重要。 本文提供的方法利用统一电能质量调节器(UPQC)的串联和并联补偿器,在电压波动时与源电流同相注入补偿电压。 基于模糊逻辑控制器,研究了UPQC两种结构在左,右分流(L-UPQC)和右-分流(R-UPQC)的执行情况,以提高单个馈线配电系统的电能质量价值。通过MATLAB / Simulink编程。 这项研究分析了各种电能质量问题。 最后,在此建议的电源系统中,右分流UPQC的性能优于。
recommend-type

ChinaTest2013-测试人的能力和发展-杨晓慧

测试人的能力和发展-杨晓慧(华为)--ChinaTest2013大会主题演讲PPT。
recommend-type

Pattern Recognition and Machine Learning习题答案(英文)

Pattern Recognition and Machine Learning习题答案(英文)

最新推荐

recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

蓄电池与超级电容混合储能并网matlab simulink仿真模型 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电

蓄电池与超级电容混合储能并网matlab simulink仿真模型。 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电,soc较低时状态与其相反。 (2)蓄电池和超级电容分别采用单环恒流控制,研究了基于超级电容的SOC分区限值管理策略,分为放电下限区,放电警戒区,正常工作区,充电警戒区,充电上限区。 (3)采用三相逆变并网,将直流侧800v电压逆变成交流311v并网,逆变采用电压电流双闭环pi控制,pwm调制。 附有参考资料。
recommend-type

017 - 搞笑一句话台词.docx

017 - 搞笑一句话台词
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

传感器集成全攻略:ICM-42688-P运动设备应用详解

![传感器集成全攻略:ICM-42688-P运动设备应用详解](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-ba33fcfbde1d1207d7b8fe45b6ea58d0.png) # 摘要 ICM-42688-P传感器作为一种先进的惯性测量单元,广泛应用于多种运动设备中。本文首先介绍了ICM-42688-P传感器的基本概述和技术规格,然后深入探讨了其编程基础,包括软件接口、数据读取处理及校准测试。接着,本文详细分析了该传感器在嵌入式系统、运动控制和人机交互设备中的实践应用,并且探讨了高级功能开发,