AttributeError: 'VOCDetection' object has no attribute 'cache'如何解決

时间: 2024-08-03 08:01:24 浏览: 69
这个错误通常发生在Python中,当你试图访问`VOCDetection`对象的一个属性`cache`,但是该对象实际上并没有定义这个属性。这可能是由于以下几个原因: 1. **拼写错误**:检查一下`cache`是否拼写正确,有时开发者可能会误输入其他名称。 2. **实例化问题**:确认你是否已经正确地初始化了`VOCDetection`对象,并且它确实包含`cache`属性。有些库或者模块的子类才会有特定的属性。 3. **API更新**:如果你使用的库有过版本更新,以前有的功能可能已被移除或重构,需要查阅最新的文档。 4. **内部实现改变**:如果`cache`是一个私有属性(以单下划线开头),外部直接访问通常是不允许的,你需要查找合适的公共接口来获取数据。 要解决这个问题,你可以按照以下步骤操作: - 检查代码中的相应行,看看是否真的应该有一个`cache`属性; - 查看`VOCDetection`的官方文档或者源码,确认`cache`属性是否存在; - 如果是尝试从父类访问,确保子类实现了这个属性或提供了一个替代的方法; - 如果库有API文档,查看是否有新的获取类似数据的方式。
相关问题

AttributeError: 'VOCDetection' object has no attribute 'cache'

这个错误是由于在 `VOCDetection` 对象中调用了一个名为 `cache` 的属性,但该属性在对象中并不存在。可能是由于代码中的拼写错误或者某些其他原因导致的。你可以检查一下代码,确保正确地初始化了 `VOCDetection` 对象,并且该对象确实应该具有 `cache` 属性。另外,还可以查看相关文档或源代码,了解该对象的属性和方法,以确定正确的用法。如果问题仍然存在,也可以提供更多的代码细节,以便我能够更好地帮助你解决问题。

AttributeError: 'Namespace' object has no attribute 'cache'

出现AttributeError: 'Namespace' object has no attribute 'cache'的错误是因为在代码中尝试访问一个不存在的属性。根据提供的引用内容,这段代码的问题是缺少'arch'参数。解决方法是使用parser添加'arch'参数。例如,可以在代码中添加以下代码: parser.add_argument('--arch', default=1, type=float, metavar='M', help='arch') <span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [解决AttributeError: ‘Namespace‘ object has no attribute ‘arch](https://blog.csdn.net/m0_47256162/article/details/127861612)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [YOLOV7常见报错问题(1)--AttributeError: ‘Namespace‘ object has no attribute ‘nEpochs](https://blog.csdn.net/weixin_57130167/article/details/126692528)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
阅读全文

相关推荐

--------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-293-c58e4e7a6b05> in <module> 3 ,'tianchuang_dafu_score','tencent_anti_fraud_v4_score']) 4 out_vardf,out_bindf = DDViz.out_all_in_one(train_all_df,inputx=inputx,y=y,dt='apply_date',dt_cut=1,miss_values=[-99],score_cut=20 ----> 5 , method='optb',output_path='data/out_all_in_one_report_0530_v1.xlsx') 6 out_bindf ~\AppData\Local\anaconda3\envs\py36\lib\site-packages\DDViz\DDViz.cp36-win_amd64.pyd in DDViz.out_all_in_one() ~\AppData\Local\anaconda3\envs\py36\lib\site-packages\DDViz\DDViz.cp36-win_amd64.pyd in DDViz.full_describe() ~\AppData\Local\anaconda3\envs\py36\lib\site-packages\pandas\core\generic.py in __setattr__(self, name, value) 5190 try: 5191 object.__getattribute__(self, name) -> 5192 return object.__setattr__(self, name, value) 5193 except AttributeError: 5194 pass pandas/_libs/properties.pyx in pandas._libs.properties.AxisProperty.__set__() ~\AppData\Local\anaconda3\envs\py36\lib\site-packages\pandas\core\generic.py in _set_axis(self, axis, labels) 688 689 def _set_axis(self, axis, labels): --> 690 self._data.set_axis(axis, labels) 691 self._clear_item_cache() 692 ~\AppData\Local\anaconda3\envs\py36\lib\site-packages\pandas\core\internals\managers.py in set_axis(self, axis, new_labels) 181 raise ValueError( 182 "Length mismatch: Expected axis has {old} elements, new " --> 183 "values have {new} elements".format(old=old_len, new=new_len) 184 ) 185 ValueError: Length mismatch: Expected axis has 2 elements, new values have 7 elements

最新推荐

recommend-type

Google C++ Style Guide(Google C++编程规范)高清PDF

On modern processors smaller code usually runs faster due to better use of the instruction cache. Decision: A decent rule of thumb is to not inline a function if it is more than 10 lines long. ...
recommend-type

适配国产arm系统环境的 mysql5.7.26 aarch64 deb 包

适配国产arm系统(银河麒麟加密专用机等)环境的 mysql5.7.26 aarch64 deb 包
recommend-type

delphi 12 控件之Abakus VCL v11.00 Build 5 for Delphi 5-12 Athens +

Abakus VCL v11.00 Build 5 for Delphi 5-12 Athens + CRACK.7z
recommend-type

高校实验室管理系统 SSM毕业设计 附带论文.zip

高校实验室管理系统 SSM毕业设计 附带论文 启动教程:https://www.bilibili.com/video/BV1GK1iYyE2B
recommend-type

新代数控API接口实现CNC数据采集技术解析

资源摘要信息:"台湾新代数控API接口是专门用于新代数控CNC机床的数据采集技术。它提供了一系列应用程序接口(API),使开发者能够创建软件应用来收集和处理CNC机床的操作数据。这个接口是台湾新代数控公司开发的,以支持更高效的数据通信和机床监控。API允许用户通过编程方式访问CNC机床的实时数据,如加工参数、状态信息、故障诊断和生产统计等,从而实现对生产过程的深入了解和控制。 CNC(计算机数控)是制造业中使用的一种自动化控制技术,它通过计算机控制机床的运动和操作,以达到高精度和高效生产的目的。DNC(直接数控)是一种通过网络将计算机直接与数控机床连接的技术,以实现文件传输和远程监控。MDC(制造数据采集)是指从生产现场采集数据的过程,这些数据通常包括产量、效率、质量等方面的信息。 新代数控API接口的功能与应用广泛,它能够帮助工厂实现以下几个方面的优化: 1. 远程监控:通过API接口,可以实时监控机床的状态,及时了解生产进度,远程诊断机床问题。 2. 效率提升:收集的数据可以用于分析生产过程中的瓶颈,优化作业流程,减少停机时间。 3. 数据分析:通过采集加工过程中的各种参数,可以进行大数据分析,用于预测维护和质量控制。 4. 整合与自动化:新代数控API可以与ERP(企业资源计划)、MES(制造执行系统)等企业系统整合,实现生产自动化和信息化。 5. 自定义报告:利用API接口可以自定义所需的数据报告格式,方便管理层作出决策。 文件名称列表中的“SyntecRemoteAP”可能指向一个具体的软件库或文件,这是实现API接口功能的程序组件,是与数控机床进行通信的软件端点,能够实现远程数据采集和远程控制的功能。 在使用新代数控API接口时,用户通常需要具备一定的编程知识,能够根据接口规范编写相应的应用程序。同时,考虑到数控机床的型号和版本可能各不相同,API接口可能需要相应的适配工作,以确保能够与特定的机床模型兼容。 总结来说,台湾新代数控API接口为数控CNC机床的数据采集提供了强大的技术支撑,有助于企业实施智能化制造和数字化转型。通过这种接口,制造业者可以更有效地利用机床数据,提高生产效率和产品质量,同时减少人力成本和避免生产中断,最终达到提升竞争力的目的。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MapReduce数据读取艺术:输入对象的高效使用秘籍

![MapReduce数据读取艺术:输入对象的高效使用秘籍](https://www.alachisoft.com/resources/docs/ncache-5-0/prog-guide/media/mapreduce-2.png) # 1. MapReduce基础与数据读取机制 MapReduce是一种编程模型,用于处理和生成大数据集。其核心思想在于将复杂的数据处理过程分解为两个阶段:Map(映射)和Reduce(归约)。在Map阶段,系统会对输入数据进行分割处理;在Reduce阶段,系统会将中间输出结果进行汇总。这种分而治之的方法,使程序能有效地并行处理大量数据。 在数据读取机制方面
recommend-type

如何在Win10系统中通过网线使用命令行工具配置树莓派的网络并测试连接?请提供详细步骤。

通过网线直接连接树莓派与Windows 10电脑是一种有效的网络配置方法,尤其适用于不方便使用无线连接的场景。以下是详细步骤和方法,帮助你完成树莓派与Win10的网络配置和连接测试。 参考资源链接:[Windows 10 通过网线连接树莓派的步骤指南](https://wenku.csdn.net/doc/64532696ea0840391e777091) 首先,确保你有以下条件满足:带有Raspbian系统的树莓派、一条网线以及一台安装了Windows 10的笔记本电脑。接下来,将网线一端插入树莓派的网口,另一端插入电脑的网口。
recommend-type

Java版Window任务管理器的设计与实现

资源摘要信息:"Java编程语言实现的Windows任务管理器" 在这部分中,我们首先将探讨Java编程语言的基本概念,然后分析Windows任务管理器的功能以及如何使用Java来实现一个类似的工具。 Java是一种广泛使用的面向对象的编程语言,它具有跨平台、对象导向、简单、稳定和安全的特点。Java的跨平台特性意味着,用Java编写的程序可以在安装了Java运行环境的任何计算机上运行,而无需重新编译。这使得Java成为了开发各种应用程序,包括桌面应用程序、服务器端应用程序、移动应用以及各种网络服务的理想选择。 接下来,我们讨论Windows任务管理器。Windows任务管理器是微软Windows操作系统中一个系统监控工具,它提供了一个可视化的界面,允许用户查看当前正在运行的进程和应用程序,并进行任务管理,包括结束进程、查看应用程序和进程的详细信息、管理启动程序、监控系统资源使用情况等。这对于诊断系统问题、优化系统性能以及管理正在运行的应用程序非常有用。 使用Java实现一个类似Windows任务管理器的程序将涉及到以下几个核心知识点: 1. Java Swing库:Java Swing是Java的一个用于构建GUI(图形用户界面)的工具包。它提供了一系列的组件,如按钮、文本框、标签和窗口等,可用于创建窗口化的桌面应用程序。Swing基于AWT(Abstract Window Toolkit),但比AWT更加强大和灵活。在开发类似Windows任务管理器的应用程序时,Swing的JFrame、JPanel、JTable等组件将非常有用。 2. Java AWT库:AWT(Abstract Window Toolkit)是Java编程语言的一个用户界面工具包。AWT提供了一系列与平台无关的GUI组件,使得开发者能够创建与本地操作系统类似的用户界面元素。在任务管理器中,可能会用到AWT的事件监听器、窗口管理器等。 3. 多线程处理:任务管理器需要能够实时显示系统资源的使用情况,这就要求程序能够异步处理多个任务。在Java中,可以通过实现Runnable接口或继承Thread类来创建新的线程,并在多线程环境中安全地管理和更新界面元素。 4. 系统资源监控:任务管理器需要能够访问和展示CPU、内存、磁盘和网络的使用情况。在Java中,可以使用各种API和类库来获取这些资源的使用情况,例如,Runtime类可以用来获取内存使用情况和进程信息,而OperatingSystemMXBean类可以用来访问操作系统级别的信息。 5. Java NIO(New Input/Output):Java NIO提供了对于网络和文件系统的非阻塞I/O操作的支持。在实现一个任务管理器时,可能会涉及到文件的读写操作,例如,查看和修改某些配置文件,NIO将会提供比传统I/O更高效的处理方式。 6. 进程管理:任务管理器需要能够结束和管理系统中的进程。在Java中,可以通过Runtime.exec()方法执行外部命令,或者使用Java Management Extensions(JMX)API来远程管理本地和远程的Java虚拟机进程。 综上所述,使用Java实现一个Windows任务管理器需要综合运用Java Swing库、多线程处理、系统资源监控、Java NIO和进程管理等多种技术。该程序将为用户提供一个易于使用的图形界面,通过该界面可以监控和管理Windows系统上的各种任务和进程。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依