使用R语言,使用bagging回归模型对鸢尾花数据集进行分析,并进行10折交叉验证
时间: 2024-03-13 17:47:07 浏览: 96
R语言数据分析案例 鸢尾花数据集分析
好的,我可以帮你回答这个问题。
在R语言中,我们可以使用随机森林算法来实现bagging回归模型对鸢尾花数据集进行分析,并进行10折交叉验证。具体步骤如下:
1.加载鸢尾花数据集
```R
library(datasets)
data(iris)
```
2.将数据集分成训练集和测试集
```R
library(caret)
set.seed(123)
trainIndex <- createDataPartition(iris$Species, p = .8, list = FALSE)
train <- iris[ trainIndex,]
test <- iris[-trainIndex,]
```
3.使用randomForest包中的randomForest函数构建随机森林回归模型,并设置ntree为10(即生成10个子模型)
```R
library(randomForest)
rf <- randomForest(Species ~ ., data = train, ntree = 10)
```
4.进行10折交叉验证,对模型进行评估
```R
library(caret)
set.seed(123)
folds <- createFolds(train$Species, k = 10)
cv <- lapply(folds, function(x) {
model <- randomForest(Species ~ ., data = train[-x,], ntree = 10)
pred <- predict(model, train[x,])
obs <- train[x, "Species"]
list(obs = obs, pred = pred)
})
```
5.输出模型的平均误差和准确率
```R
library(caret)
RMSE <- sqrt(mean(unlist(lapply(cv, function(x) mean((x$obs - x$pred)^2)))))
R2 <- mean(unlist(lapply(cv, function(x) cor(x$obs, x$pred)^2)))
print(paste0("RMSE: ", RMSE))
print(paste0("R2: ", R2))
```
完整的R代码如下:
```R
library(datasets)
data(iris)
library(caret)
set.seed(123)
trainIndex <- createDataPartition(iris$Species, p = .8, list = FALSE)
train <- iris[ trainIndex,]
test <- iris[-trainIndex,]
library(randomForest)
rf <- randomForest(Species ~ ., data = train, ntree = 10)
library(caret)
set.seed(123)
folds <- createFolds(train$Species, k = 10)
cv <- lapply(folds, function(x) {
model <- randomForest(Species ~ ., data = train[-x,], ntree = 10)
pred <- predict(model, train[x,])
obs <- train[x, "Species"]
list(obs = obs, pred = pred)
})
RMSE <- sqrt(mean(unlist(lapply(cv, function(x) mean((x$obs - x$pred)^2)))))
R2 <- mean(unlist(lapply(cv, function(x) cor(x$obs, x$pred)^2)))
print(paste0("RMSE: ", RMSE))
print(paste0("R2: ", R2))
```
希望这个回答能够帮助到你!如果你还有其他问题,请随时提出。
阅读全文