w=np.dot(np.linalg.pinv(phi),y_train)
时间: 2024-03-28 07:39:58 浏览: 107
这行代码中,w是一个权重向量,phi是一个特征矩阵,y_train是一个标签向量。该行代码的作用是使用最小二乘法来求解线性回归问题的权重向量w。
具体来说,phi是一个m×n的矩阵,其中m是样本数,n是特征数。y_train是一个m维的向量,存储了每个样本对应的真实标签。在线性回归中,我们的目标是找到一个权重向量w,使得预测值y_pred和真实标签y_train的平方差最小,即min ||y_train - phi*w||^2。
最小二乘法是一种常用的求解该问题的方法,它的基本思路是通过求解矩阵的伪逆(pseudo-inverse)来计算最优权重向量w。伪逆是一种广义逆矩阵,可以在矩阵不可逆的情况下求解线性方程组。
np.linalg.pinv()是NumPy库中的一个函数,用于计算矩阵的伪逆。它接受一个矩阵作为输入,并返回该矩阵的伪逆矩阵。因此,np.linalg.pinv(phi)返回phi矩阵的伪逆矩阵。
np.dot()是NumPy库中的一个函数,用于计算矩阵的乘法。因此,np.dot(np.linalg.pinv(phi), y_train)返回phi矩阵的伪逆矩阵和y_train向量的乘积,即最优权重向量w的值。
相关问题
dt = 1.0 # 采样时间 A = np.array([[1, dt, 0.5*dt*dt], [0, 1, dt], [0, 0, 1]]) # 状态转移矩阵 H = np.array([1, 0, 0]).reshape(1, 3) # 观测矩阵 Q = np.array([[0.05, 0.05, 0.0], [0.05, 0.1, 0.01], [0.0, 0.01, 0.01]]) # 过程噪声协方差矩阵 R = np.array([0.5]).reshape(1, 1) # 观测噪声协方差矩阵 P = np.eye(3) # 状态协方差矩阵 # 定义卡尔曼滤波函数 def kalman_filter(z): x_hat = np.zeros((3, 1)) # 初始状态向量 for i in range(len(z)): # 预测 x_hat_minus = np.dot(A, x_hat) P_minus = np.dot(np.dot(A, P), A.T) + Q # 更新 K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R)) x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus))) P = np.dot((np.eye(3) - np.dot(K, H)), P_minus) return x_hat # 对每个方向的时序信号进行卡尔曼滤波 x_filt = kalman_filter(x)报错File "G:\project2\KSVD.py", line 36, in <module> x_filt = kalman_filter(x) File "G:\project2\KSVD.py", line 26, in kalman_filter P_minus = np.dot(np.dot(A, P), A.T) + Q UnboundLocalError: local variable 'P' referenced before assignment
这个错误是因为在函数内部使用了变量P,但没有将其定义为全局变量或者传递给函数。解决方法是在函数内部将P定义为全局变量,或者将其作为函数的参数传递进来。例如:
```python
def kalman_filter(z, P):
x_hat = np.zeros((3, 1)) # 初始状态向量
for i in range(len(z)):
# 预测
x_hat_minus = np.dot(A, x_hat)
P_minus = np.dot(np.dot(A, P), A.T) + Q
# 更新
K = np.dot(np.dot(P_minus, H.T), np.linalg.inv(np.dot(np.dot(H, P_minus), H.T) + R))
x_hat = x_hat_minus + np.dot(K, (z[i] - np.dot(H, x_hat_minus)))
P = np.dot((np.eye(3) - np.dot(K, H)), P_minus)
return x_hat, P
P = np.eye(3) # 初始状态协方差矩阵
x_filt, P = kalman_filter(x, P)
```
y_d = np.concatenate((y_train, zero2), axis = 0).reshape(-1,1) A1 = np.concatenate((A, B), axis = 0) theta_hat = np.linalg.pinv(A1) @ y_d A2 = funcs.vandermonde(x_test, 8) y_test_hat = A2 @ theta_hat y_train_hat = A @ theta_hat
这段代码的作用是使用Vandermonde矩阵拟合一个多项式函数,并得到在训练集和测试集上的预测值。
具体地,np.concatenate函数将训练集y_train和一个全零向量zero2按照列方向拼接起来,并将结果reshape为一个列向量y_d。这样做是为了在构造矩阵A1时,将训练集和测试集的数据分别放在不同的行中。
然后,使用np.concatenate函数将训练集的Vandermonde矩阵A和全零向量B按照行方向拼接起来,得到矩阵A1,其中B的大小要与测试集的Vandermonde矩阵A2的大小相同。
接着,使用np.linalg.pinv函数计算A1的伪逆矩阵,并将其与y_d相乘,得到拟合多项式的系数向量theta_hat。
最后,使用funcs.vandermonde函数计算测试集的Vandermonde矩阵A2,将其与theta_hat相乘,得到测试集上的预测值y_test_hat,将A与theta_hat相乘,得到训练集上的预测值y_train_hat。
通过这段代码,我们可以得到一个多项式函数的拟合模型,并使用该模型在训练集和测试集上进行预测。
阅读全文