def create_LSTM_model(): # instantiate the model model = Sequential() model.add(Input(shape=(X_train.shape[1], X_train.shape[2]*5))) model.add(Reshape((X_train.shape[1], 1,X_train.shape[2], 5))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True)) model.add(Flatten()) model.add(Dropout(0.5)) model.add(RepeatVector(1)) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改该代码,解决ValueError: Input 0 of layer "sequential_76" is incompatible with the layer: expected shape=(None, 10, 5), found shape=(None, 10, 1, 1, 5)问题
时间: 2023-11-14 13:06:36 浏览: 65
可以尝试将代码中的以下两行:
```
model.add(Input(shape=(X_train.shape[1], X_train.shape[2]*5)))
model.add(Reshape((X_train.shape[1], 1,X_train.shape[2], 5)))
```
修改为:
```
model.add(Input(shape=(X_train.shape[1], X_train.shape[2], 5)))
```
这样就不需要加入 Reshape 层了,因为输入的数据已经是 (batch_size, timesteps, features) 的形状,可以直接作为 LSTM 层的输入。
相关问题
def create_LSTM_model(): # instantiate the model model = Sequential() X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features))) model.add(Flatten()) model.add(RepeatVector(n_outputs)) model.add(MaxPooling1D()) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改该代码,解决UnboundLocalError Traceback (most recent call last) <ipython-input-21-b28a080066f3> in <module> 46 return model 47 # lstm network ---> 48 model = create_LSTM_model() 49 # summary 50 print(model.summary()) <ipython-input-21-b28a080066f3> in create_LSTM_model() 12 # instantiate the model 13 model = Sequential() ---> 14 X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features)) 15 model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) 16 UnboundLocalError: local variable 'X_train' referenced before assignment问题
这个错误是因为 `X_train` 变量在函数内部被重新定义,但在 `X_train.reshape()` 被调用时,该变量尚未被赋值。解决方法是将 `X_train` 作为参数传递给函数,并在调用函数时将其传递。修改后的代码如下:
```
def create_LSTM_model(X_train):
# instantiate the model
model = Sequential()
X_train = X_train.reshape((X_train.shape[0], n_steps, 1, n_length, n_features))
model.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
# cnn1d Layers
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', input_shape=(n_steps, 1, n_length, n_features)))
model.add(Flatten())
model.add(RepeatVector(n_outputs))
model.add(MaxPooling1D())
# 添加lstm层
model.add(LSTM(64, activation='relu', return_sequences=True))
model.add(Dropout(0.5))
#添加注意力层
model.add(LSTM(64, activation='relu', return_sequences=False))
# 添加dropout
model.add(Dropout(0.5))
model.add(Dense(128))
# 输出层
model.add(Dense(1, name='Output'))
# 编译模型
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
# lstm network
X_train = ...
model = create_LSTM_model(X_train)
# summary
print(model.summary())
```
def create_LSTM_model(): # instantiate the model model = Sequential() model.add(Input(shape=(X_train.shape[1], X_train.shape[2]))) # cnn1d Layers model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True)) model.add(Dropout(0.5)) # 添加lstm层 model.add(LSTM(64, activation = 'relu', return_sequences=True)) model.add(Dropout(0.5)) #添加注意力层 model.add(LSTM(64, activation = 'relu', return_sequences=False)) # 添加dropout model.add(Dropout(0.5)) model.add(Dense(128)) # 输出层 model.add(Dense(1, name='Output')) # 编译模型 model.compile(optimizer='adam', loss='mse', metrics=['mae']) return model # lstm network model = create_LSTM_model() # summary print(model.summary())修改该代码,解决ValueError: Input 0 of layer "conv_lstm2d_14" is incompatible with the layer: expected ndim=5, found ndim=3. Full shape received: (None, 10, 1)问题
该错误是由于输入数据的维度不匹配导致的。ConvLSTM2D层期望输入的数据维度为5,而当前的输入数据维度为3。因此,需要将输入数据的维度转换为正确的形状。
可以通过在输入层之前添加一个Reshape层来实现这一点,将原始输入从(None,10,1)转换为(None,10,1,1,1)。
修改代码如下:
``` python
def create_LSTM_model():
# instantiate the model
model = Sequential()
model.add(Input(shape=(X_train.shape[1], X_train.shape[2])))
# reshape the input to match the expected input shape of the ConvLSTM2D layer
model.add(Reshape((X_train.shape[1], 1, X_train.shape[2], 1)))
# cnn1d Layers
model.add(ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu', padding='same', return_sequences=True))
model.add(Dropout(0.5))
# 添加lstm层
model.add(LSTM(64, activation = 'relu', return_sequences=True))
model.add(Dropout(0.5))
#添加注意力层
model.add(LSTM(64, activation = 'relu', return_sequences=False))
# 添加dropout
model.add(Dropout(0.5))
model.add(Dense(128))
# 输出层
model.add(Dense(1, name='Output'))
# 编译模型
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
return model
# lstm network
model = create_LSTM_model()
# summary
print(model.summary())
```
这样就可以避免ValueError错误了。
阅读全文