一维残差神经网络python代码
时间: 2023-03-14 08:19:24 浏览: 415
我不知道具体的Python代码,但是一般的一维残差神经网络的基本原理是:输入层通过可调节的权重和偏置参数来计算出特征,然后经过激活函数计算出输出层的值,最后根据损失函数来更新权重和偏置参数,以达到最优化的结果。
相关问题
用pytorch写一个一维残差神经网络代码,最好是resnet1d18
好的,我可以回答这个问题。以下是一个使用 PyTorch 实现的一维残差神经网络代码,它是一个 ResNet1D18 模型:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class ResNetBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResNetBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm1d(out_channels)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm1d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm1d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet1D18(nn.Module):
def __init__(self, num_classes=10):
super(ResNet1D18, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv1d(1, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm1d(64)
self.layer1 = self._make_layer(ResNetBlock, 64, 2, stride=1)
self.layer2 = self._make_layer(ResNetBlock, 128, 2, stride=2)
self.layer3 = self._make_layer(ResNetBlock, 256, 2, stride=2)
self.layer4 = self._make_layer(ResNetBlock, 512, 2, stride=2)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.fc = nn.Linear(512, num_classes)
def _make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.max_pool1d(out, kernel_size=3, stride=2, padding=1)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = out.view(out.size(), -1)
out = self.fc(out)
return out
```
这个模型包含了 ResNetBlock 和 ResNet1D18 两个类,其中 ResNetBlock 是残差块,ResNet1D18 是一个包含多个残差块的一维残差神经网络。你可以使用这个代码来训练一个 ResNet1D18 模型来解决你的问题。
用pytorch写一个一维残差卷积神经网络代码
以下是一个简单的一维残差卷积神经网络的 PyTorch 代码示例:
```python
import torch
import torch.nn as nn
class ResNet1D(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size, stride, padding):
super(ResNet1D, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding)
self.bn1 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size, stride, padding)
self.bn2 = nn.BatchNorm1d(out_channels)
self.stride = stride
self.in_channels = in_channels
self.out_channels = out_channels
self.padding = padding
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.stride != 1 or self.in_channels != self.out_channels:
residual = nn.functional.conv1d(x, self.out_channels, kernel_size=1, stride=self.stride, padding=)
residual = nn.BatchNorm1d(self.out_channels)
out += residual
out = self.relu(out)
return out
```
这是一个基本的 ResNet1D 类,它包含两个卷积层和一个残差块。在前向传递期间,输入通过第一个卷积层,然后通过批量标准化和 ReLU 激活函数。然后,输出通过第二个卷积层和批量标准化。如果输入和输出通道数不同,或者步幅不为 1,则使用 1x1 卷积层和批量标准化来调整残差。最后,输出通过 ReLU 激活函数并返回。
阅读全文