python使用dlib进行稀疏光流跟踪人脸的代码
时间: 2023-07-23 14:40:48 浏览: 128
python使用dlib进行人脸检测和关键点的示例
下面是使用dlib进行稀疏光流跟踪人脸的Python代码:
```
import dlib
import cv2
# 初始化dlib的人脸检测器和68个关键点检测器
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat')
# 读取视频文件
cap = cv2.VideoCapture('video.mp4')
# 选择第一帧中的人脸作为跟踪目标
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
rects = detector(gray, 0)
if len(rects) > 0:
rect = rects[0]
shape = predictor(gray, rect)
points = [(shape.part(i).x, shape.part(i).y) for i in range(68)]
prev_points = points
else:
exit()
# 创建稀疏光流对象
lk_params = dict(winSize=(15, 15), maxLevel=2,
criteria=(cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
# 跟踪人脸关键点
while True:
ret, frame = cap.read()
if not ret:
break
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 使用光流跟踪人脸关键点
next_points, status, error = cv2.calcOpticalFlowPyrLK(
cv2.GaussianBlur(gray, (5, 5), 0), cv2.GaussianBlur(prev_gray, (5, 5), 0),
prev_points, None, **lk_params)
# 仅保留跟踪成功的关键点
next_points = next_points[status == 1]
prev_points = prev_points[status == 1]
# 更新跟踪目标
if len(next_points) < 10:
rects = detector(gray, 0)
if len(rects) > 0:
rect = rects[0]
shape = predictor(gray, rect)
next_points = [(shape.part(i).x, shape.part(i).y) for i in range(68)]
prev_points = next_points
# 绘制跟踪结果
for i, (prev_point, next_point) in enumerate(zip(prev_points, next_points)):
x1, y1 = prev_point
x2, y2 = next_point
cv2.line(frame, (x1, y1), (x2, y2), (0, 0, 255), 2, cv2.LINE_AA)
cv2.circle(frame, (x2, y2), 3, (0, 255, 0), -1, cv2.LINE_AA)
prev_gray = gray.copy()
prev_points = next_points
cv2.imshow('frame', frame)
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
```
上述代码中,首先使用dlib的人脸检测器和68个关键点检测器选择第一帧中的人脸作为跟踪目标。然后,创建稀疏光流对象,并使用cv2.calcOpticalFlowPyrLK()函数跟踪人脸关键点。在跟踪过程中,如果跟踪成功的关键点数量小于10,则重新选择一个人脸作为跟踪目标。最后,绘制跟踪结果并显示。
阅读全文