报错ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 2 dimensions. The detected shape was (1, 14) + inhomogeneous part.
时间: 2023-10-13 21:54:57 浏览: 262
这个错误通常出现在使用NumPy数组时,尝试将一个序列对象赋值给数组的元素。这个错误的原因可能是数组的形状不匹配,或者尝试将不同形状的数据赋值给数组。
在这种情况下,建议检查你的数据和数组的形状是否匹配。确保你要赋值给数组的序列对象具有与数组相同的形状。如果你想要赋值一个多维的序列对象给二维数组的元素,那么你需要确保这个序列对象的形状与数组的子数组形状一致。
下面是一个示例,展示了如何避免这个错误:
```python
import numpy as np
# 创建一个2x3的二维数组
array = np.zeros((2, 3))
# 创建一个2x3的多维序列对象
sequence = np.array([[1, 2, 3], [4, 5, 6]])
# 确保序列对象与数组的形状一致
if sequence.shape == array.shape:
array = sequence
print(array)
```
在上面的示例中,我们创建了一个2x3的二维数组`array`,然后创建了一个2x3的多维序列对象`sequence`。在赋值之前,我们通过比较它们的形状来确保它们是一致的,如果一致,就将`sequence`赋值给`array`。这样就可以避免出现`ValueError`错误。
请检查你的代码,确保在赋值之前对数据和数组的形状进行适当的检查和匹配,以避免这个错误的发生。
相关问题
img = np.array(img)报错ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (3,) + inhomogeneous part.
非常抱歉,我之前给出的解决方案有误。根据你提供的错误信息,你可以尝试以下代码来解决问题:
```python
import numpy as np
# 将图像转换为RGB格式并转置维度
img = np.asarray(img)
img = img[:, :, ::-1].transpose((2, 0, 1))
```
这样,你就可以将图像转换为RGB格式并重新排列维度。请尝试一下并告诉我是否还有其他问题。
40行报错:ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. The detected shape was (3,) + inhomogeneous part.
非常抱歉,我之前给出的修正代码仍然存在问题。在计算特征向量时,我们需要使用一个空的列表来存储特征值。以下是修正后的代码:
```python
import os
import csv
import struct
import numpy as np
import pywt
def calculate_features(data):
features = []
for i in range(3):
features.append(np.mean(data[:, i]))
features.append(np.var(data[:, i]))
for i in range(1, 17):
coeffs = pywt.wavedec(data[:, i % 3], "db4", level=i)
energy = np.sum(np.square(coeffs))
features.append(energy)
return features
# 创建保存CSV文件的文件夹
csv_folder = "csv"
if not os.path.exists(csv_folder):
os.makedirs(csv_folder)
# 遍历文件夹及子文件夹中的二进制bin文件
for root, dirs, files in os.walk(".", topdown=True):
for filename in files:
if filename.endswith(".bin"):
# 构建CSV文件路径
bin_filepath = os.path.join(root, filename)
csv_filename = f"{os.path.splitext(filename)[0]}_原始文件.csv"
csv_filepath = os.path.join(csv_folder, csv_filename)
# 打开二进制bin文件并读取数据
with open(bin_filepath, "rb") as bin_file:
bin_data = bin_file.read()
# 解析二进制数据并转换为浮点数
floats = []
for i in range(0, len(bin_data), 8):
float_value = struct.unpack("d", bin_data[i:i + 8])[0]
floats.append(float_value)
# 将数据按顺序分别放到1、2、3列并保存到CSV文件
data = np.array(floats).reshape(-1, 3)
with open(csv_filepath, "w", newline="") as csv_file:
writer = csv.writer(csv_file)
writer.writerow(["1", "2", "3"])
writer.writerows(data)
# 计算特征并保存到特征文件
feature_filename = f"{os.path.splitext(filename)[0]}_特征文件.csv"
feature_filepath = os.path.join(csv_folder, feature_filename)
with open(feature_filepath, "w", newline="") as feature_file:
writer = csv.writer(feature_file)
header = []
for i in range(1, 17):
header.append(f"均值{i}")
header.append(f"方差{i}")
header.append(f"能量{i}")
writer.writerow(header)
# 按窗口大小计算特征
window_size = 100
step_size = 50
num_windows = (len(data) - window_size) // step_size + 1
for i in range(num_windows):
start_idx = i * step_size
end_idx = start_idx + window_size
window_data = data[start_idx:end_idx]
features = calculate_features(window_data)
writer.writerow(features)
```
这次的代码会按照窗口大小和步长对数据进行切片,并在每个窗口上计算特征。然后,它将这些特征保存到特征文件中。非常抱歉之前的错误带来的困扰,希望这次的回答能够满足你的需求。
阅读全文