def build_model(max_features, maxlen): """Build LSTM model""" model = Sequential() model.add(Embedding(max_features, 128, input_length=maxlen)) model.add(LSTM(128)) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) # model.add(tf.keras.layers.BatchNormalization()) model.compile(loss='binary_crossentropy', optimizer='rmsprop') return model怎么初始化
时间: 2024-01-20 17:13:50 浏览: 116
要初始化这个函数中的模型,我们只需要调用这个函数即可,这将返回一个已编译好的Keras模型对象。以下是一个示例:
```
max_features = 10000
maxlen = 100
model = build_model(max_features, maxlen)
```
在这个示例中,我们将“max_features”设置为10000,“maxlen”设置为100,并调用“build_model”函数来构建模型。这将返回一个已编译好的Keras模型对象“model”,我们可以使用它来进行训练和预测。例如,我们可以使用以下代码来编译模型并训练它:
```
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=32, epochs=10, validation_data=(x_test, y_test))
```
在这个示例中,我们使用“model.compile”方法来编译模型,指定优化器、损失函数和评估指标。然后,我们使用“model.fit”方法来训练模型,指定训练数据、批大小、训练轮数和验证数据。这将训练模型并返回训练结果。
相关问题
def build_model(max_features, maxlen): """Build LSTM model""" model = Sequential() model.add(Embedding(max_features, 128, input_length=maxlen)) model.add(LSTM(128)) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) # model.add(tf.keras.layers.BatchNormalization()) model.compile(loss='binary_crossentropy', optimizer='rmsprop') return model怎么model.build
这个函数中的模型是使用Keras的Sequential API构建的,而不是使用Functional API或Subclassing API。在这种情况下,我们不需要使用“model.build”方法来构建模型,因为它已经在“Sequential”类中自动完成了。
“Sequential”类是Keras中最简单的模型容器,它按顺序将各个网络层堆叠在一起,从而形成一个完整的神经网络模型。在这个函数中,我们首先使用“model.add”方法来添加一个嵌入层(Embedding)、LSTM层(LSTM)、Dropout层(Dropout)和一个密集层(Dense)到模型中,然后在最后添加一个sigmoid激活函数(Activation)来输出二元分类结果。
在这个函数中,我们已经定义好了模型的结构和参数,并使用“model.compile”方法来编译模型。这个方法接受损失函数(loss)、优化器(optimizer)和评估指标(metrics)等参数,然后构建出一个可训练的模型。最后,我们将这个模型返回给调用者。
def build_model(max_features=1, maxlen=65): """Build LSTM model""" model = Sequential() model.add(Embedding(max_features, 128, input_length=maxlen)) model.add(LSTM(128)) model.add(Dropout(0.5)) model.add(Dense(1)) model.add(Activation('sigmoid')) # model.add(tf.keras.layers.BatchNormalization()) model.compile(loss='binary_crossentropy', optimizer='rmsprop') return model def data(Domain): valid_chars = pickle.load(open('dictionary.plk','rb')) Domain = [[valid_chars[y] for y in x] for x in Domain] Domain = sequence.pad_sequences(Domain, maxlen=64) return Domain def run(Domain): Domains=data(Domain) model = build_model() model = model.load_weights('Mymodel.h5') predictions = model.predict(Domains) return predictions if __name__ == "__main__": print(run('baidu.com')) # Run with 1 to make it fast
在 `run` 函数中,使用 `model.load_weights` 方法加载模型权重时,不需要重新定义 `model`,直接使用之前定义的 `model` 即可。修改后的代码如下:
```python
def run(Domain):
Domains=data(Domain)
model = build_model()
model.load_weights('Mymodel.h5')
predictions = model.predict(Domains)
return predictions
```
此外,`run` 函数的参数需要传入一个列表或数组,因为 `data` 函数返回的是一个二维数组。修改后的代码如下:
```python
if __name__ == "__main__":
print(run(['baidu.com'])) # 注意需要传入一个列表或数组
```
另外,`build_model` 函数中的 `maxlen` 参数为 65,而在 `data` 函数中使用的是 64。需要保持一致。
阅读全文
相关推荐














