tf.adam优化代码
时间: 2023-11-09 09:07:09 浏览: 89
下面是一个使用TensorFlow中的Adam优化器的Python代码示例:
```python
import tensorflow as tf
# 定义输入和输出的占位符
input_placeholder = tf.placeholder(dtype=tf.float32, shape=[None, input_size], name='input')
output_placeholder = tf.placeholder(dtype=tf.int32, shape=[None], name='output')
# 定义模型
hidden_layer = tf.layers.dense(inputs=input_placeholder, units=hidden_size, activation=tf.nn.relu)
logits = tf.layers.dense(inputs=hidden_layer, units=output_size, activation=None)
# 定义损失函数和Adam优化器
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=output_placeholder, logits=logits))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss)
# 训练模型
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(num_epochs):
_, loss_val = sess.run([train_op, loss], feed_dict={input_placeholder: X_train, output_placeholder: y_train})
if i % 10 == 0:
print('Epoch:', i, 'Loss:', loss_val)
```
在上面的代码中,我们首先定义输入和输出的占位符,然后使用TensorFlow的`tf.layers` API定义了一个具有ReLU激活函数的隐藏层和一个没有激活函数的输出层,之后我们定义了损失函数和Adam优化器,并使用`optimizer.minimize()`方法来最小化损失函数。在训练过程中,我们使用`sess.run()`方法运行`train_op`和`loss`节点,并传递输入和输出的占位符的值作为feed_dict参数。
阅读全文
相关推荐


















