forecast_time = forecast_time + ' 0:00:00'#不要动空格 forecast_time_obj = datetime.datetime.strptime(forecast_time, "%Y-%m-%d %H:%M:%S") 代码优化
时间: 2024-02-03 21:11:40 浏览: 91
可以使用以下代码将两行合并并进行优化:
```
forecast_time_obj = datetime.datetime.strptime(forecast_time.strip() + ' 0:00:00', "%Y-%m-%d %H:%M:%S")
```
这样可以避免使用`+`操作符连接字符串和空格,同时使用`strip`函数去除字符串首尾空格。
相关问题
def predict_roll_4hour(roll_time, data): forecast_time = roll_time[0:10] roll_time = datetime.datetime.strptime(roll_time, "%Y-%m-%d %H:%M:%S") day_one = predict_days(forecast_time, 2, data) # 数据划分 predict_sum = day_one.iloc[:, 1] time_gap = int((int(roll_time.minute) + int(roll_time.hour) * 60) / 15) pre_ture_4hour = predict_sum[time_gap: time_gap + 16] time_slots = [] for i in range(16): time_slot = roll_time + datetime.timedelta(minutes=15 * i) time_slots.append(time_slot) df = pd.DataFrame({'date': time_slots[0:len(pre_ture_4hour)], 'load(kw)': pre_ture_4hour}) return df 代码优化
可以考虑使用列表推导式来简化代码:
```python
def predict_roll_4hour(roll_time, data):
forecast_time = roll_time[:10]
roll_time = datetime.datetime.strptime(roll_time, "%Y-%m-%d %H:%M:%S")
day_one = predict_days(forecast_time, 2, data) # 数据划分
predict_sum = day_one.iloc[:, 1]
time_gap = int((int(roll_time.minute) + int(roll_time.hour) * 60) / 15)
pre_ture_4hour = predict_sum[time_gap: time_gap + 16]
time_slots = [roll_time + datetime.timedelta(minutes=15 * i) for i in range(16)]
df = pd.DataFrame({'date': time_slots[:len(pre_ture_4hour)], 'load(kw)': pre_ture_4hour})
return df
```
此外,建议在函数开头加上注释,说明函数的功能和输入输出参数的含义,以增强代码的可读性。
forecast_upper = forecast_mean + 1.96 * forecast_vol.mean forecast_lower = forecast_mean - 1.96 * forecast_vol.meanforecast_upper = forecast_upper.to_numpy().ravel() forecast_lower = forecast_lower.to_numpy().ravel()中为什么forecast_upper 和 forecast_lower 的长度不一致
这可能是因为 `forecast_mean` 和 `forecast_vol.mean` 的长度不一致导致的。具体来说,如果 `forecast_mean` 和 `forecast_vol.mean` 分别是 `m` 和 `v` 长度为 `n` 的一维数组,那么 `1.96 * v` 的长度也是 `n`,但是 `forecast_mean + 1.96 * forecast_vol.mean` 的长度是 `n`,而不是 `m`。因此, `forecast_upper` 和 `forecast_lower` 的长度都是 `n`,而不是 `m`。如果你想将 `forecast_upper` 和 `forecast_lower` 的长度与 `forecast_mean` 保持一致,你可以使用 NumPy 的 `repeat` 函数重复 `forecast_mean` 中的每个元素 `n` 次,然后再计算上下限。例如:
```
import numpy as np
m = forecast_mean
v = forecast_vol.mean()
n = len(v)
repeated_m = np.repeat(m, n)
forecast_upper = repeated_m + 1.96 * v
forecast_lower = repeated_m - 1.96 * v
```
这样,`forecast_upper` 和 `forecast_lower` 的长度就与 `forecast_mean` 一致了。
阅读全文