def emb(self, x): x = x + x.new_tensor(self.offsets).unsqueeze(0) return self.embedding(x)
时间: 2024-04-29 07:19:44 浏览: 137
这是一个方法 `emb()`,用于对输入进行嵌入操作。该方法接受一个张量 `x` 作为输入,在嵌入操作中,首先将输入张量 `x` 加上一个偏移量张量,该偏移量张量由模型初始化时计算得到的偏移量列表 `self.offsets` 转换而来,并使用 `unsqueeze` 方法将其增加一个维度,以便与 `x` 进行广播相加。然后,该方法将处理后的张量 `x` 作为输入传递给嵌入层 `self.embedding`,并返回嵌入层的输出。在嵌入操作中,模型使用一个嵌入层将每个输入特征映射到一个低维度的向量空间,以便进行后续的运算。
相关问题
def cross_network(self, x_0): x_l = x_0 # batch x feature * emb for i in range(self.cross_layer_num): # fast method xl_w = torch.tensordot(x_l, self.cross_layer_w[i], dims=([1], [0])) # batch xl_dot = (x_0.transpose(0, 1) * xl_w).transpose(0, 1) # batch x feature * emb # slow method # xl_dot = torch.matmul(torch.matmul(x_0.unsqueeze(-1),x_l.unsqueeze(1)),self.cross_layer_w[i]) x_l = xl_dot + self.cross_layer_b[i] + x_l return x_l
这是一个方法 `cross_network()`,用于实现交叉网络(Cross Network)。该方法接受一个张量 `x_0` 作为输入,代表 DNN 输出的特征。在交叉网络中,输入特征被拆分成多个子向量,并对每个子向量进行交叉运算,以增强特征之间的交互性。具体来说,该方法使用一个 for 循环来迭代交叉网络的每一层。在每一层中,首先将输入 `x_l` 初始化为上一层的输出(或者初始化为输入 `x_0`,对于第一层)。然后,该方法使用 `torch.tensordot()` 方法计算输入 `x_l` 与交叉网络权重矩阵 `self.cross_layer_w[i]` 的乘积,得到一个张量 `xl_w`。接下来,该方法使用广播法则将 `x_0` 和 `xl_w` 逐元素相乘,得到一个张量 `xl_dot`,表示输入特征与交叉网络的交叉项。最后,该方法将 `xl_dot` 与交叉网络的偏置 `self.cross_layer_b[i]` 相加,并将结果与输入 `x_l` 相加,得到当前层的输出。在交叉网络中,每个交叉层都可以看作是一个非线性的特征交叉器,用于学习特征之间的交互关系。
class RotatE_AutoNeg(nn.Module): def __init__(self, nentity, nrelation, hidden_dim, gamma): super(RotatE_AutoNeg, self).__init__() self.nentity = nentity self.nrelation = nrelation self.hidden_dim = hidden_dim self.gamma = gamma self.embedding_range = nn.Parameter( torch.Tensor([(self.gamma + 2.0) / (self.hidden_dim * 2)]), requires_grad=False) # 计算初始化范围 self.entity_emb = nn.Embedding(self.nentity, self.hidden_dim) # 设置维度 self.relation_emb = nn.Parameter(torch.Tensor(self.nrelation, self.hidden_dim)) # 实体初始化,服从(a,b)的均匀分布 nn.init.uniform_( tensor=self.entity_emb.weight.data, a=-self.embedding_range.item(), b=self.embedding_range.item() ) # 关系初始化,服从(a,b)的均匀分布 nn.init.uniform_( tensor=self.relation_emb.data, a=-self.embedding_range.item(), b=self.embedding_range.item() )解释
这是一个基于PyTorch的RotatE_AutoNeg模型的定义。具体来说,这个模型包含以下几个部分:
- nentity:知识图谱中实体的数量
- nrelation:知识图谱中关系的数量
- hidden_dim:实体和关系向量的维度
- gamma:损失函数中的超参数
- embedding_range:初始化向量的范围
- entity_emb:实体嵌入矩阵,用于将实体映射到向量空间
- relation_emb:关系嵌入矩阵,用于将关系映射到向量空间
具体地,这个模型使用了PyTorch中的Embedding层来初始化实体向量,使用了Tensor对象来初始化关系向量。在初始化时,实体向量服从(a,b)的均匀分布,其中a和b分别为负的embedding_range.item()和正的embedding_range.item()。关系向量同理。通过这种初始化方式,可以将实体和关系向量随机初始化在一个较小的范围内,从而可以更容易地收敛到最优解。
阅读全文