TVM如何使用OpenMP实现并行
时间: 2023-07-20 07:29:11 浏览: 178
基于OpenMP的并行程序设计
TVM是一个深度学习编译器和运行时库,可以将深度学习模型编译为不同硬件上的高效代码。TVM支持多种硬件和软件后端,包括CPU、GPU、FPGA、OpenCL等。在CPU上使用OpenMP实现并行化是TVM的一种常见做法。
具体来说,TVM支持使用OpenMP加速CPU上的计算。在TVM中,可以通过调用TVM的autotvm模块来自动优化模型并生成高效的代码。在生成代码时,可以通过设置TVM的target参数来选择使用OpenMP并行化。例如,以下代码将使用OpenMP并行化生成CPU上的代码:
``` python
import tvm
from tvm import autotvm
# 定义模型和数据
@autotvm.template
def my_model(N, M, K):
A = tvm.placeholder((N, K), name='A')
B = tvm.placeholder((K, M), name='B')
k = tvm.reduce_axis((0, K), 'k')
C = tvm.compute((N, M), lambda i, j: tvm.sum(A[i, k] * B[k, j], axis=k), name='C')
s = tvm.create_schedule(C.op)
# 设置并行化
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], 32, 32)
s[C].parallel(xo)
return s, [A, B, C]
# 设置TVM运行环境和目标硬件
ctx = tvm.context('llvm', 0)
target = tvm.target.Target('llvm -mcpu=core-avx2 -mtriple=x86_64-linux-gnu')
# 自动优化模型并生成代码
task = autotvm.task.create(my_model, args=(1024, 1024, 1024), target=target)
measure_option = autotvm.measure_option(builder='local', runner=autotvm.LocalRunner(number=5))
tuner = autotvm.tuner.XGBTuner(task)
tuner.tune(n_trial=1000, measure_option=measure_option)
# 编译生成模型
with tvm.transform.PassContext(opt_level=3):
lib = relay.build(my_model(1024, 1024, 1024), target=target)
```
在上述代码中,使用TVM的autotvm模块自动优化模型并生成代码,其中设置了使用OpenMP并行化,并行程度为32。最后使用TVM的relay.build()函数编译生成模型。当运行生成的模型时,TVM会自动使用OpenMP并行化加速模型计算。
阅读全文