knn_list = [] for i in range(n): dist = np.linalg.norm(X_test[1] - X_train[i], ord=p) knn_list.append((dist, y_train[i]))
时间: 2024-05-28 15:12:56 浏览: 108
这段代码是K近邻算法的实现,其中n表示训练集中样本的数量,X_test和X_train分别是测试集和训练集的特征矩阵,y_train是训练集的标签。np.linalg.norm()用于计算两个向量之间的距离,ord参数表示使用的范数,p表示使用的是Lp范数,即Lp距离。knn_list用于存储测试样本与每个训练样本的距离以及对应的标签,然后根据距离对knn_list进行排序,取出前k个样本的标签进行投票,最后得出测试样本的预测标签。
相关问题
现有1500个二维空间的数据点,import time as time import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 from sklearn.datasets import make_swiss_roll # Generate data (swiss roll dataset) n_samples = 1500 noise = 0.05 X, _ = make_swiss_roll(n_samples, noise=noise) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], cmap=plt.cm.Spectral),编写一个python程序不调用locally_linear_embedding,实现LLE降维
LLE是一种经典的非线性降维算法,可以将高维数据映射到低维空间中,同时保留数据之间的局部关系。以下是一个简单的 Python 实现 LLE 算法的代码:
```
import numpy as np
def lle(X, k, d):
# X: 输入数据,每行为一个样本
# k: k近邻的个数
# d: 目标维度
n = X.shape[0]
# 计算距离矩阵
dist = np.zeros((n, n))
for i in range(n):
for j in range(i+1, n):
d = np.linalg.norm(X[i] - X[j])
dist[i][j] = d
dist[j][i] = d
# 找到每个样本的k近邻
knn_idx = np.zeros((n, k), dtype=int)
for i in range(n):
idx = np.argsort(dist[i])[1:k+1]
knn_idx[i] = idx
# 计算权重矩阵
W = np.zeros((n, n))
for i in range(n):
Z = X[knn_idx[i]] - X[i]
C = np.dot(Z, Z.T)
w = np.linalg.solve(C, np.ones(k))
w /= np.sum(w)
for j in knn_idx[i]:
W[i][j] = w[j - np.where(knn_idx[i] == j)[0][0]]
# 计算降维后的数据
M = np.eye(n) - W
eigvals, eigvecs = np.linalg.eigh(np.dot(M.T, M))
idx = np.argsort(eigvals)[1:d+1]
Y = eigvecs[:, idx]
return Y
```
这个函数接受一个输入数据矩阵 X、k 近邻的个数 k 和目标维度 d,返回一个降维后的数据矩阵 Y。该函数首先计算每个样本之间的距离矩阵,然后找到每个样本的 k 近邻,并计算权重矩阵。接着,它构造了一个矩阵 M 并通过求解 M^T M 的特征值和特征向量来降维。最后,函数返回一个降维后的数据矩阵 Y。
def Knn_graph(data,edge_type,label,edge_norm,K):
import numpy as np
from sklearn.neighbors import NearestNeighbors
# Calculate the distance matrix
if edge_norm == 'euclidean':
dist_matrix = np.linalg.norm(data[:, np.newaxis, :] - data[np.newaxis, :, :], axis=-1)
else:
dist_matrix = np.sum(np.abs(data[:, np.newaxis, :] - data[np.newaxis, :, :]), axis=-1)
# Find the K nearest neighbors for each point
nbrs = NearestNeighbors(n_neighbors=K+1).fit(data)
distances, indices = nbrs.kneighbors(data)
# Create the adjacency matrix
num_nodes = len(data)
adj_matrix = np.zeros((num_nodes, num_nodes))
# Loop over each node and its K nearest neighbors
for i in range(num_nodes):
for j in range(1, K+1):
k = indices[i][j]
if edge_type == 'unweighted':
adj_matrix[i,k] = 1
adj_matrix[k,i] = 1
else:
adj_matrix[i,k] = 1/dist_matrix[i,k]
adj_matrix[k,i] = 1/dist_matrix[i,k]
# Create the edge list
edge_list = []
for i in range(num_nodes):
for j in range(i+1, num_nodes):
if adj_matrix[i,j] != 0:
edge_list.append((i,j))
# Create the label list
label_list = []
for i in range(num_nodes):
label_list.append(label[i])
return edge_list, label_list
阅读全文