estimator.fit(x_train, y_train)
时间: 2023-12-24 07:14:02 浏览: 93
This code line is used to train an estimator model on a given training dataset.
The "estimator" is an object that implements the estimator interface in scikit-learn, which includes a "fit" method. The "fit" method takes two arguments: the training data (x_train) and the corresponding target values (y_train).
The purpose of this code line is to use the training data to fit the estimator model, which means adjusting the model's parameters to minimize the difference between its predictions and the actual target values. Once the model is trained, it can be used to make predictions on new data.
相关问题
检查代码:estimator.fit(x_train, y_train)
这段代码看起来是使用 TensorFlow 的 Estimator 对象对模型进行训练。`x_train` 和 `y_train` 分别是输入特征和标签,用于训练模型。
在执行这段代码之前,您需要先定义一个 Estimator 对象,并且指定好模型的结构、损失函数、优化器等参数。例如:
```
import tensorflow as tf
# 定义模型
def model_fn(features, labels, mode):
# 模型结构定义
...
# 计算损失函数
loss = ...
# 定义优化器
optimizer = ...
# 返回 EstimatorSpec 对象
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
# 创建 Estimator 对象
estimator = tf.estimator.Estimator(model_fn=model_fn, ...)
# 训练模型
estimator.train(input_fn=input_fn)
```
其中,`model_fn` 函数用于定义模型结构、损失函数和优化器等参数,`estimator` 对象用于执行训练和评估操作。在训练模型时,您需要使用 `input_fn` 函数来加载训练数据,例如:
```
# 定义输入特征和标签
x_train, y_train = ...
# 定义 input_fn 函数
def input_fn():
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.shuffle(buffer_size=10000)
dataset = dataset.batch(batch_size=32)
iterator = dataset.make_one_shot_iterator()
features, labels = iterator.get_next()
return features, labels
# 训练模型
estimator.train(input_fn=input_fn)
```
这里的 `input_fn` 函数用于将输入数据转换为 TensorFlow 的 Dataset 对象,然后进行批处理和 shuffle 操作,最后返回特征和标签。在训练模型时,您需要使用 `input_fn` 函数来加载训练数据。
修正代码 for k in range(self.n_fold): est=self.init_estimator() train_id, val_id=cv[k] x=pd.DataFrame(x) y=pd.DataFrame(y) # x_train, x_test = x.iloc[train_id], x.iloc[test_id] # y_train, y_test = y.iloc[train_id], y.iloc[test_id] # print(x[train_id]) x_train= x.iloc[train_id] y_train= y.iloc[train_id] est.fit(x_train, y_train) x_proba=est.predict_proba(x.iloc[val_id]) print(x_proba) print(x_probas[val_id]) y_pre=est.predict(x.iloc[val_id]) acc=accuracy_score(y.iloc[val_id],y_pre) f1=f1_score(y.iloc[val_id],y_pre,average="macro") LOGGER_2.info("{}, n_fold{},Accuracy={:.4f}, f1_macro={:.4f}".format(self.name,k,acc,f1)) x_probas[val_id]=x_proba
修正后的代码应该是这样的:
```
for k in range(self.n_fold):
est = self.init_estimator()
train_id, val_id = cv[k]
x = pd.DataFrame(x)
y = pd.DataFrame(y)
x_train = x.iloc[train_id]
y_train = y.iloc[train_id]
est.fit(x_train, y_train)
x_proba = est.predict_proba(x.iloc[val_id])
print(x_proba)
print(x_probas[val_id])
y_pre = est.predict(x.iloc[val_id])
acc = accuracy_score(y.iloc[val_id], y_pre)
f1 = f1_score(y.iloc[val_id], y_pre, average="macro")
LOGGER_2.info("{}, n_fold{},Accuracy={:.4f}, f1_macro={:.4f}".format(self.name, k, acc, f1))
x_probas[val_id] = x_proba
```
在原有代码的基础上,主要修改了以下两点:
1. 将 `x`、`y` 转化为 DataFrame 类型。
2. 将 `x_train` 和 `y_train` 的赋值方式修改为 `x_train = x.iloc[train_id]`、`y_train = y.iloc[train_id]`,以保证对应行的数据匹配。
阅读全文