estimator = DecisionTreeClassifier(criterion="entropy") estimator.fit(x_train,y_train)这段代码第二句用法详解
时间: 2024-01-17 14:02:49 浏览: 77
这段代码的第二句是使用决策树分类器(DecisionTreeClassifier)对训练数据进行拟合(fit)。
具体来说,fit() 方法中的 x_train 和 y_train 分别表示训练数据的特征和标签,即模型用于学习和预测的输入和输出。在这个例子中,x_train 是一个二维数组,每一行代表一个样本,每一列代表一个特征;y_train 是一个一维数组,每个元素代表一个样本的标签。
拟合过程中,分类器会根据决策树算法,通过对训练数据的分析和学习,构建出一棵决策树模型,从而实现对未知数据的分类预测。
需要注意的是,这里使用了“信息熵”(entropy)作为划分标准,即在构建决策树时,分类器会选择最大化信息熵的特征作为分裂点,从而使得每个子节点的样本尽可能地纯净。
相关问题
from sklearn.tree import DecisionTreeClassifier from sklearn import tree best_dt =DecisionTreeClassifier(max_depth=2,criterion='entropy',min_samples_split= 2) best_dt.fit(X_train, y_train) print (best_dt.score(X_train, y_train)) print (best_dt.score(X_test, y_test))from sklearn.metrics import classification_report, confusion_matrix y_pred =best_dt.predict(X_test) print(classification_report(y_test,y_pred))cm = confusion_matrix(y_test, y_pred) plt.figure(figsize = (8,8)) sns.heatmap(cm,cmap= "Blues", linecolor = 'black' , linewidth = 1 , annot = True, fmt='' , xticklabels = ['A','B','C','D'] , yticklabels = ['A','B','C','D']) plt.xlabel("Predicted") plt.ylabel("Actual") plt.show()tree_model = DecisionTreeClassifier() prams ={ 'max_depth' : [3 ,5, 7,8, 11, 12],'min_samples_split' : [2, 3, 5, 9] , 'criterion' : ['gini', 'entropy'] } gd_cv2= GridSearchCV(tree_model , param_grid=prams, n_jobs=-1 ,cv=10)gd_cv2.fit(X_train , y_train) tunn_tree =gd_cv2.best_estimator_ print(f'Train : {tunn_tree.score(X_train, y_train)}') model_eval(tunn_tree,X_test,y_test)plt.figure(figsize=(15,10)) names = ['A', 'D', 'B', 'C'] tree.plot_tree(best_dt,feature_names = X_train.columns,class_names=names,filled = True); plt.show()
这段代码使用了scikit-learn库中的DecisionTreeClassifier类来创建一个决策树分类器,并使用max_depth、criterion、min_samples_split等参数对其进行了配置。其中,max_depth设置了决策树的最大深度,criterion指定使用的划分标准为信息熵,min_samples_split指定了节点分裂的最小样本数为2。
之后,使用fit方法对训练数据进行拟合,并使用score方法计算了模型在训练集和测试集上的准确率,并将其打印输出。接下来,使用classification_report和confusion_matrix方法计算并打印了模型的分类报告和混淆矩阵。
随后,使用GridSearchCV方法对决策树分类器进行调参,尝试不同的max_depth、min_samples_split和criterion参数组合,以求得最优的模型。最后,使用tunn_tree.score方法计算了调参后模型在训练集上的准确率,并使用model_eval方法计算并打印了模型在测试集上的性能表现。
最后,使用plot_tree方法可视化了决策树模型的决策过程。
tree_model = DecisionTreeClassifier() prams ={ 'max_depth' : [3 ,5, 7,8, 11, 12],'min_samples_split' : [2, 3, 5, 9] , 'criterion' : ['gini', 'entropy'] } gd_cv2= GridSearchCV(tree_model , param_grid=prams, n_jobs=-1 ,cv=10) gd_cv2.fit(X_train , y_train) tunn_tree =gd_cv2.best_estimator_ print(f'Train : {tunn_tree.score(X_train, y_train)}') model_eval(tunn_tree,X_test,y_test)解释各行代码
1. `tree_model = DecisionTreeClassifier()`: 这行代码是创建一个决策树分类器对象。
2. `prams ={ 'max_depth' : [3 ,5, 7,8, 11, 12],'min_samples_split' : [2, 3, 5, 9] , 'criterion' : ['gini', 'entropy'] }`: 这行代码是定义一个超参数字典,包含了决策树模型的最大深度、节点最小样本数、划分标准等参数的取值范围。
3. `gd_cv2= GridSearchCV(tree_model , param_grid=prams, n_jobs=-1 ,cv=10)`: 这行代码是使用网格搜索算法对决策树模型进行超参数调优,`GridSearchCV`函数的输入参数包括模型对象`tree_model`、超参数字典`prams`、并行运行的工作数`n_jobs`和交叉验证的折数`cv`。
4. `gd_cv2.fit(X_train , y_train)`: 这行代码是使用训练数据集`X_train`和标签`y_train`对决策树模型进行训练,并进行超参数搜索。
5. `tunn_tree =gd_cv2.best_estimator_`: 这行代码是从网格搜索结果中获取最优的决策树模型,并将其赋值给`tunn_tree`变量。
6. `print(f'Train : {tunn_tree.score(X_train, y_train)}')`: 这行代码是输出在训练集上的准确率,使用`tunn_tree`模型对训练集`X_train`进行预测,并与实际标签`y_train`进行比较。
7. `model_eval(tunn_tree,X_test,y_test)`: 这行代码是使用测试数据集`X_test`和标签`y_test`对调优后的模型进行评估,这里的`model_eval`是一个自定义函数,用于输出模型在测试集上的分类报告和混淆矩阵等指标。
注:在前面代码中,我们使用了`from sklearn.tree import DecisionTreeClassifier`导入了`DecisionTreeClassifier`类,以及`from sklearn.model_selection import GridSearchCV`导入了`GridSearchCV`函数。同时,`model_eval`函数是一个自定义函数,需要在代码中定义。
阅读全文