写出利用backtrader进行股票强化学习的代码
时间: 2024-05-03 07:19:38 浏览: 162
在强化学习框架下学习交易
以下是使用backtrader进行股票强化学习的代码示例:
```python
import backtrader as bt
import numpy as np
import pandas as pd
class StockTradingEnv(bt.Env):
def __init__(self, data, max_stock=1e2, initial_capital=1e6):
self.data = data
self.max_stock = max_stock
self.initial_capital = initial_capital
self.cur_step = None
self.stock_owned = None
self.stock_price = None
self.cash_in_hand = None
self.action_space = np.arange(3)
self.action_list = [0, 1, 2]
self.reward_range = (0, self.initial_capital)
# observation_space: [stock_owned, stock_price, cash_in_hand]
self.observation_space = np.zeros((3,), dtype=np.float32)
self.reset()
def reset(self):
self.cur_step = 0
self.stock_owned = 0
self.stock_price = self.data[self.cur_step]
self.cash_in_hand = self.initial_capital
return self._get_obs()
def step(self, action):
assert action in self.action_space
prev_val = self._get_val()
self.cur_step += 1
self.stock_price = self.data[self.cur_step]
if action == self.action_list[0]: # Buy
available = self.cash_in_hand // self.stock_price
self.stock_owned += min(available, self.max_stock)
self.cash_in_hand -= self.stock_price * self.stock_owned
elif action == self.action_list[1]: # Sell
self.stock_owned = 0
self.cash_in_hand += self.stock_price * self.stock_owned
else: # Hold
pass
cur_val = self._get_val()
reward = cur_val - prev_val
done = self.cur_step == len(self.data) - 1
info = {'cur_val': cur_val}
return self._get_obs(), reward, done, info
def _get_obs(self):
obs = np.zeros((3,), dtype=np.float32)
obs[0] = self.stock_owned
obs[1] = self.stock_price
obs[2] = self.cash_in_hand
return obs
def _get_val(self):
return self.stock_owned * self.stock_price + self.cash_in_hand
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = []
self.gamma = 0.95 # discount rate
self.epsilon = 1.0 # exploration rate
self.epsilon_min = 0.01
self.epsilon_decay = 0.995
self.learning_rate = 0.001
self.model = self._build_model()
def _build_model(self):
model = Sequential()
model.add(Dense(64, input_dim=self.state_size, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(self.action_size, activation='linear'))
model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate))
return model
def memorize(self, state, action, reward, next_state, done):
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return np.random.choice(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = reward + self.gamma * \
np.amax(self.model.predict(next_state)[0])
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verbose=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self, name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
def train(agent, env, episodes, batch_size):
for e in range(episodes):
state = env.reset()
state = np.reshape(state, [1, state_size])
done = False
i = 0
while not done:
action = agent.act(state)
next_state, reward, done, info = env.step(action)
next_state = np.reshape(next_state, [1, state_size])
agent.memorize(state, action, reward, next_state, done)
state = next_state
i += 1
if done:
print("episode: {}/{}, score: {}, e: {:.2}"
.format(e, episodes, info['cur_val'], agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
if __name__ == '__main__':
data = pd.read_csv('AAPL.csv')['Close'].values[::-1] # reverse order
env = StockTradingEnv(data)
state_size = env.observation_space.shape[0]
action_size = len(env.action_space)
agent = DQNAgent(state_size, action_size)
train(agent, env, episodes=1000, batch_size=32)
```
阅读全文