扩展欧几里得算法的代码

时间: 2024-05-16 17:12:57 浏览: 5
下面是扩展欧几里得算法的 Python 代码实现: ```python def extended_euclidean_algorithm(a, b): """ 使用扩展欧几里得算法计算a和b的最大公约数g以及一组整数x和y,满足ax + by = g :param a: 整数a :param b: 整数b :return: 最大公约数g和一组整数x和y,满足ax + by = g """ if b == 0: return a, 1, 0 else: g, x1, y1 = extended_euclidean_algorithm(b, a % b) x, y = y1, x1 - (a // b) * y1 return g, x, y ``` 这个函数接受两个整数 `a` 和 `b` 作为输入,并返回最大公约数 `g` 以及一组整数 `x` 和 `y`,满足 `ax + by = g`。
相关问题

c++扩展欧几里得算法代码

以下是使用C++实现的扩展欧几里得算法的示例代码: ```cpp #include <iostream> // 扩展欧几里得算法 int extendedGCD(int a, int b, int& x, int& y) { if (b == 0) { x = 1; y = 0; return a; } int x1, y1; int gcd = extendedGCD(b, a % b, x1, y1); x = y1; y = x1 - (a / b) * y1; return gcd; } // 测试代码 int main() { int a = 56; int b = 15; int x, y; int gcd = extendedGCD(a, b, x, y); std::cout << "GCD(" << a << ", " << b << ") = " << gcd << std::endl; std::cout << "贝祖等式: " << gcd << " = " << x << "*" << a << " + " << y << "*" << b << std::endl; return 0; } ``` 运行此代码,将输出: ``` GCD(56, 15) = 1 贝祖等式: 1 = -4*56 + 15*15 ``` 这个例子演示了如何使用扩展欧几里得算法计算56和15的最大公约数,并输出它们的贝祖等式。

python扩展欧几里得算法

扩展欧几里得算法是一种用于求解一元线性同余方程的算法,可以表示为ax ≡ b (mod n)。在Python中,我们可以用以下函数来实现扩展欧几里得算法: ```python def extended_gcd(a, b): if b == 0: return 1, 0, a else: x, y, d = extended_gcd(b, a % b) return y, x - (a // b) * y, d def solve_linear_congruence(a, b, n): x, y, d = extended_gcd(a, n) if b % d == 0: x0 = (x * (b // d)) % n for i in range(d): print("x ≡", (x0 + i * (n // d)) % n, "(mod", n, ")") else: print("无解") ``` 在这段代码中,我们首先定义了一个`extended_gcd`函数,用于计算扩展欧几里得算法的结果。然后我们定义了一个`solve_linear_congruence`函数,用于解一元线性同余方程。这个函数会调用`extended_gcd`函数来得到结果,并根据情况输出方程的解或者无解情况。 通过这段代码,我们可以方便地在Python中使用扩展欧几里得算法来解决一元线性同余方程,这对于一些加密算法和数论问题来说是非常有用的。

相关推荐

最新推荐

recommend-type

Java开发案例-springboot-66-自定义starter-源代码+文档.rar

Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar Java开发案例-springboot-66-自定义starter-源代码+文档.rar
recommend-type

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg

单家独院式别墅图纸D027-三层-12.80&10.50米-施工图.dwg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、
recommend-type

已知自动控制原理中通过更高的频率特征来评估切割频率和库存——相位稳定。确定封闭系统的稳定性。求Wcp 和ψ已知W(p)=30•(0.1p+1)•(12.5p+1)/p•(10p+1)•(0.2p+1)•(p+1)

根据相位稳定的定义,我们需要找到一个频率 Wcp,使得相位满足 -ψ = -180°,即 ψ = 180°。此时系统的相位裕度为 0°,系统处于边缘稳定状态。 首先,我们需要将 W(p) 表示成极点和零点的形式。将分母和分子分别因式分解,得到: W(p) = 30 • (0.1p+1) • (12.5p+1) / [p • (10p+1) • (0.2p+1) • (p+1)] = 375p/(p+1) - 3750/(10p+1) + 750p/(0.2p+1) - 3750p/(10p+1) + 150p/(p+1) + 30 因此,系统的极点为 -1、-0.1、-0.2、