import imutils import time import cv2 import numpy as np from kalman import * import matplotlib.pyplot as plt
时间: 2023-07-21 07:01:17 浏览: 186
您好!您的代码看起来是在使用Python编写一个计算机视觉相关的程序。根据您的代码,您可能需要安装一些额外的库来运行它。在Ubuntu上进行Python编程,可以按照以下步骤安装和配置所需的库:
1. 安装pip:打开终端,输入以下命令安装pip(Python包管理工具):
```
sudo apt-get install python-pip
```
2. 安装所需的库:根据您的代码,您可能需要安装以下库:imutils、OpenCV、numpy和matplotlib。
```
pip install imutils
pip install opencv-python
pip install numpy
pip install matplotlib
```
3. 验证安装:运行以下命令验证库是否成功安装:
```
python -c "import imutils; import cv2; import numpy; import matplotlib"
```
如果没有报错,说明库已成功安装。
请注意,这只是安装所需库的基本步骤。根据您的具体环境和需求,可能需要进行其他配置或安装其他依赖项。希望这可以帮助您在Ubuntu上进行Python编程!
相关问题
优化:import numpy as np import scipy.signal as signal import scipy.io.wavfile as wavfile import pywt import matplotlib.pyplot as plt def wiener_filter(x, fs, cutoff): # 维纳滤波函数 N = len(x) freqs, Pxx = signal.periodogram(x, fs=fs) H = np.zeros(N) H[freqs <= cutoff] = 1 Pxx_smooth = np.maximum(Pxx, np.max(Pxx) * 1e-6) H_smooth = np.maximum(H, np.max(H) * 1e-6) G = H_smooth / (H_smooth + 1 / Pxx_smooth) y = np.real(np.fft.ifft(np.fft.fft(x) * G)) return y def kalman_filter(x): # 卡尔曼滤波函数 Q = np.diag([0.01, 1]) R = np.diag([1, 0.1]) A = np.array([[1, 1], [0, 1]]) H = np.array([[1, 0], [0, 1]]) x_hat = np.zeros((2, len(x))) P = np.zeros((2, 2, len(x))) x_hat[:, 0] = np.array([x[0], 0]) P[:, :, 0] = np.eye(2) for k in range(1, len(x)): x_hat[:, k] = np.dot(A, x_hat[:, k-1]) P[:, :, k] = np.dot(np.dot(A, P[:, :, k-1]), A.T) + Q K = np.dot(np.dot(P[:, :, k], H.T), np.linalg.inv(np.dot(np.dot(H, P[:, :, k]), H.T) + R)) x_hat[:, k] += np.dot(K, x[k] - np.dot(H, x_hat[:, k])) P[:, :, k] = np.dot(np.eye(2) - np.dot(K, H), P[:, :, k]) y = x_hat[0, :] return y # 读取含有噪声的语音信号 rate, data = wavfile.read("shengyin.wav") data = data.astype(float) / 32767.0 # 维纳滤波 y_wiener = wiener_filter(data, fs=rate, cutoff=1000) # 卡尔曼滤波 y_kalman = kalman_filter(data) # 保存滤波后的信号到文件中 wavfile.write("wiener_filtered.wav", rate, np.int32(y_wiener * 32767.0)) wavfile.write("kalman_filtered.wav", rate, np.int32(y_kalman * 32767.0))
这段代码的优化可以从以下几个方面入手:
1. 合理使用numpy中的函数,避免使用Python内置的循环语句,以提高运行效率。
2. 在函数中进行参数检查,以确保参数的类型和取值范围符合要求,避免不必要的错误和异常。
3. 对于频繁使用的函数,可以将其封装成单独的函数,以提高代码的可读性和重用性。
4. 可以使用并行化的技术来提高运行效率,例如多线程或者异步编程。
下面是对代码的优化改进:
import numpy as np
import scipy.signal as signal
import scipy.io.wavfile as wavfile
import pywt
import matplotlib.pyplot as plt
from typing import Tuple
def periodogram(x: np.ndarray, fs: int) -> Tuple[np.ndarray, np.ndarray]:
freqs, Pxx = signal.periodogram(x, fs=fs)
return freqs, Pxx
def wiener_filter(x: np.ndarray, fs: int, cutoff: float) -> np.ndarray:
# 维纳滤波函数
N = len(x)
freqs, Pxx = periodogram(x, fs=fs)
H = np.zeros(N)
H[freqs <= cutoff] = 1
Pxx_smooth = np.maximum(Pxx, np.max(Pxx) * 1e-6)
H_smooth = np.maximum(H, np.max(H) * 1e-6)
G = H_smooth / (H_smooth + 1 / Pxx_smooth)
y = np.real(np.fft.ifft(np.fft.fft(x) * G))
return y
def kalman_filter(x: np.ndarray) -> np.ndarray:
# 卡尔曼滤波函数
Q = np.diag([0.01, 1])
R = np.diag([1, 0.1])
A = np.array([[1, 1], [0, 1]])
H = np.array([[1, 0], [0, 1]])
x_hat = np.zeros((2, len(x)))
P = np.zeros((2, 2, len(x)))
x_hat[:, 0] = np.array([x[0], 0])
P[:, :, 0] = np.eye(2)
for k in range(1, len(x)):
x_hat[:, k] = np.dot(A, x_hat[:, k-1])
P[:, :, k] = np.dot(np.dot(A, P[:, :, k-1]), A.T) + Q
K = np.dot(np.dot(P[:, :, k], H.T), np.linalg.inv(np.dot(np.dot(H, P[:, :, k]), H.T) + R))
x_hat[:, k] += np.dot(K, x[k] - np.dot(H, x_hat[:, k]))
P[:, :, k] = np.dot(np.eye(2) - np.dot(K, H), P[:, :, k])
y = x_hat[0, :]
return y
def filter_wav_file(in_file: str, out_file: str, filter_func) -> None:
# 读取含有噪声的语音信号
rate, data = wavfile.read(in_file)
data = data.astype(float) / 32767.0
# 进行滤波
y_filtered = filter_func(data)
# 保存滤波后的信号到文件中
wavfile.write(out_file, rate, np.int32(y_filtered * 32767.0))
# 维纳滤波
filter_wav_file("shengyin.wav", "wiener_filtered.wav", lambda x: wiener_filter(x, fs=rate, cutoff=1000))
# 卡尔曼滤波
filter_wav_file("shengyin.wav", "kalman_filtered.wav", kalman_filter)
from catboost import CatBoostClassifier import pandas as pd # 导入pandas工具库 import matplotlib.pyplot as plt pd.set_option('display.max_columns', 1000) pd.set_option('display.max_rows', 1000) pd.set_option('display.max_colwidth', 1000) import numpy as np import matplotlib.pyplot as plt """ Q 系统噪声 R 测量噪声 X(k|k-1) 上一次状态预测结果 X(k-1|k-1) 上一时刻的最优预测值 P(k|k-1) X(k|k-1)对应的convariance协方差 P(k-1|k-1) X(k-1|k-1) 对应的convariance协方差 """ x_last = 0 p_last = 0 Q = 0.01 # 系统噪声 R = 0.5 # 测量噪声 def kalman(z_measure, x_last=0, p_last=0, Q=0.018, R=0.0542): x_mid = x_last p_mid = p_last + Q kg = p_mid / (p_mid + R) x_now = x_mid + kg * (z_measure - x_mid) p_now = (1 - kg) * p_mid p_last = p_now x_last = x_now return x_now, p_last, x_last path = 'C:/Users/calm夜/Desktop/作业1.xlsx' data_B = pd.read_excel(path, header=None) x = list(data_B.iloc[::, 0]) y=[] for i in range(len(x)): pred, p_last, x_last = kalman(x[i], x_last, p_last, Q, R) y.append(pred) ax1 = plt.subplot(1,2,1) ax2 = plt.subplot(1,2,2) plt.sca(ax1) plt.plot(x, color="g") # 测量值 plt.sca(ax2) plt.plot(y, color="r") # 预测值 plt.show() 把python代码转成matlab代码
Sure! Here's the equivalent MATLAB code for your Python code:
```matlab
Q = 0.01; % 系统噪声
R = 0.5; % 测量噪声
x_last = 0;
p_last = 0;
path = 'C:/Users/calm夜/Desktop/作业1.xlsx';
data_B = xlsread(path);
x = data_B(:, 1);
y = zeros(size(x));
for i = 1:length(x)
x_mid = x_last;
p_mid = p_last + Q;
kg = p_mid / (p_mid + R);
x_now = x_mid + kg * (x(i) - x_mid);
p_now = (1 - kg) * p_mid;
p_last = p_now;
x_last = x_now;
y(i) = x_now;
end
ax1 = subplot(1,2,1);
plot(x, 'g'); % 测量值
ax2 = subplot(1,2,2);
plot(y, 'r'); % 预测值
```
Please note that in MATLAB, you will need to use the `xlsread` function to read data from an Excel file. Also, the `subplot` function is used to create subplots, and the color should be specified as a string ('g' for green and 'r' for red).
阅读全文