int left=0, int right=0, int right=INT_MAX, int bottom=INT_MAX,重新定义int right

时间: 2023-12-14 20:03:55 浏览: 203
如果你想重新定义 `int right` 的初始值,你可以函数或代码的适当位置进行重新赋值。例如: ``` int right = 100; 新的初始值为100 ``` 这样`right` 的初始值将被设置为100。你可以将其放置在函数的开头或任何需要重新定义 `right` 的地方。请注意,如果你在函数内部重新定义了该变量,则只对该函数内部有效。如果要在整个程序中重新定义 `right`,则应该将其放在全局范围内(函数外部)。 另外,如果你想给变量 `right` 设置为 `INT_MAX`(整型变量的最大值),你可以使用如下语句: ```c right = INT_MAX; ``` 这将给 `right` 变量赋予 `INT_MAX` 的值。这适用于在函数中重新定义 `right` 或更新已有变量的值。请确保在使用 `INT_MAX` 前包含 `<limits.h>` 头文件来获取该常量的定义。
相关问题

float CornerDetector::shiTomasiScore(const cv::Mat &img, int u, int v) { assert(img.type() == CV_8UC1); float dXX = 0.0; float dYY = 0.0; float dXY = 0.0; const int halfbox_size = 15; const int box_size = 2 * halfbox_size; const int box_area = box_size * box_size; const int x_min = u - halfbox_size; const int x_max = u + halfbox_size; const int y_min = v - halfbox_size; const int y_max = v + halfbox_size; if (x_min < 1 || x_max >= img.cols - 1 || y_min < 1 || y_max >= img.rows - 1) return 0.0; // patch is too close to the boundary const int stride = img.step.p[0]; for (int y = y_min; y < y_max; ++y) { const uint8_t *ptr_left = img.data + stride * y + x_min - 1; const uint8_t *ptr_right = img.data + stride * y + x_min + 1; const uint8_t *ptr_top = img.data + stride * (y - 1) + x_min; const uint8_t *ptr_bottom = img.data + stride * (y + 1) + x_min; for (int x = 0; x < box_size; ++x, ++ptr_left, ++ptr_right, ++ptr_top, ++ptr_bottom) { float dx = *ptr_right - *ptr_left; float dy = *ptr_bottom - *ptr_top; dXX += dx * dx; dYY += dy * dy; dXY += dx * dy; } } // Find and return smaller eigenvalue: dXX = dXX / (2.0 * box_area); dYY = dYY / (2.0 * box_area); dXY = dXY / (2.0 * box_area); return 0.5 * (dXX + dYY - sqrt((dXX + dYY) * (dXX + dYY) - 4 * (dXX * dYY - dXY * dXY)));

这段代码是计算给定图像中某个像素点的Shi-Tomasi角点得分,返回一个浮点数作为角点的响应值。Shi-Tomasi角点检测是一种常用的角点检测算法,它通过计算图像中每个像素点的响应值来确定哪些像素点是角点。该函数的参数包括一个输入图像`img`以及一个像素点坐标`(u,v)`。 这个函数的具体实现包括以下几个步骤: 1. 首先判断输入图像是否为单通道的灰度图像,如果不是则会出现断言失败(assertion failed)的错误。 2. 定义了三个浮点数变量`dXX`、`dYY`、`dXY`,分别表示在某个像素点处计算得到的矩阵M的三个元素。 3. 定义一些常量,包括半个窗口的大小`halfbox_size`、窗口大小`box_size`、窗口面积`box_area`、以及窗口四个边界的坐标。 4. 判断窗口是否太靠近图像边界,如果是则直接返回0,表示该像素点不是角点。 5. 计算图像的步长`stride`,用于在循环中访问图像像素。 6. 对于窗口中的每个像素点,计算该点处的dx和dy,然后计算dXX、dYY和dXY的值。 7. 最后根据上述计算结果得到Shi-Tomasi角点的响应值,并返回该值作为函数的结果。 总体来说,这个函数是计算给定图像中某个像素点的Shi-Tomasi角点响应值的一个实现。

if box_height < box_width: horizontal_pad = long_edge_pad_ratio * font_size vertical_pad = short_edge_pad_ratio * font_size else: horizontal_pad = short_edge_pad_ratio * font_size vertical_pad = long_edge_pad_ratio * font_size left = np.clip(int(np.min(points_x) - horizontal_pad), 0, w) top = np.clip(int(np.min(points_y) - vertical_pad), 0, h) right = np.clip(int(np.max(points_x) + horizontal_pad), 0, w) bottom = np.clip(int(np.max(points_y) + vertical_pad), 0, h) dst_img = src_img[top:bottom, left:right]这段代码作用是什么,详细解释

这段代码的作用是根据传入的参数,对图片进行裁剪。具体来说,传入的参数包括原始图片(`src_img`)、目标图像框的四个角点坐标(`points_x`和`points_y`)、字体大小(`font_size`)、长边和短边的填充比例(`long_edge_pad_ratio`和`short_edge_pad_ratio`)。 首先,根据目标图像框的长宽比,计算出水平和垂直方向上的填充大小(`horizontal_pad`和`vertical_pad`)。当`box_height < box_width`时,说明目标框的长边为宽度,短边为高度,此时水平填充使用长边填充比例,垂直填充使用短边填充比例;反之,当`box_height >= box_width`时,说明目标框的长边为高度,短边为宽度,此时水平填充使用短边填充比例,垂直填充使用长边填充比例。 然后,根据目标图像框的四个角点坐标和填充大小,计算出裁剪后的图像区域的左上角和右下角坐标(`left`、`top`、`right`和`bottom`)。注意到这里使用了`np.clip`函数,确保计算出的裁剪区域不超出原始图像的边界。 最后,将原始图片按照计算出的裁剪区域进行切割,得到裁剪后的图像(`dst_img`)。
阅读全文

相关推荐

解释代码:int post_process(int8_t* input0, int8_t* input1, int8_t* input2, int model_in_h, int model_in_w, float conf_threshold, float nms_threshold, float scale_w, float scale_h, std::vector<int32_t>& qnt_zps, std::vector<float>& qnt_scales, detect_result_group_t* group) { static int init = -1; if (init == -1) { int ret = 0; ret = loadLabelName(LABEL_NALE_TXT_PATH, labels); if (ret < 0) { return -1; } init = 0; } memset(group, 0, sizeof(detect_result_group_t)); std::vector<float> filterBoxes; std::vector<float> objProbs; std::vector<int> classId; // stride 8 int stride0 = 8; int grid_h0 = model_in_h / stride0; int grid_w0 = model_in_w / stride0; int validCount0 = 0; validCount0 = process(input0, (int*)anchor0, grid_h0, grid_w0, model_in_h, model_in_w, stride0, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[0], qnt_scales[0]); // stride 16 int stride1 = 16; int grid_h1 = model_in_h / stride1; int grid_w1 = model_in_w / stride1; int validCount1 = 0; validCount1 = process(input1, (int*)anchor1, grid_h1, grid_w1, model_in_h, model_in_w, stride1, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[1], qnt_scales[1]); // stride 32 int stride2 = 32; int grid_h2 = model_in_h / stride2; int grid_w2 = model_in_w / stride2; int validCount2 = 0; validCount2 = process(input2, (int*)anchor2, grid_h2, grid_w2, model_in_h, model_in_w, stride2, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[2], qnt_scales[2]); int validCount = validCount0 + validCount1 + validCount2; // no object detect if (validCount <= 0) { return 0; } std::vector<int> indexArray; for (int i = 0; i < validCount; ++i) { indexArray.push_back(i); } quick_sort_indice_inverse(objProbs, 0, validCount - 1, indexArray); std::set<int> class_set(std::begin(classId), std::end(classId)); for (auto c : class_set) { nms(validCount, filterBoxes, classId, indexArray, c, nms_threshold); } int last_count = 0; group->count = 0; /* box valid detect target */ for (int i = 0; i < validCount; ++i) { if (indexArray[i] == -1 || last_count >= OBJ_NUMB_MAX_SIZE) { continue; } int n = indexArray[i]; float x1 = filterBoxes[n * 4 + 0]; float y1 = filterBoxes[n * 4 + 1]; float x2 = x1 + filterBoxes[n * 4 + 2]; float y2 = y1 + filterBoxes[n * 4 + 3]; int id = classId[n]; float obj_conf = objProbs[i]; group->results[last_count].box.left = (int)(clamp(x1, 0, model_in_w) / scale_w); group->results[last_count].box.top = (int)(clamp(y1, 0, model_in_h) / scale_h); group->results[last_count].box.right = (int)(clamp(x2, 0, model_in_w) / scale_w); group->results[last_count].box.bottom = (int)(clamp(y2, 0, model_in_h) / scale_h); group->results[last_count].prop = obj_conf; char* label = labels[id]; strncpy(group->results[last_count].name, label, OBJ_NAME_MAX_SIZE); // printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left, // group->results[last_count].box.top, // group->results[last_count].box.right, group->results[last_count].box.bottom, label); last_count++; } group->count = last_count; return 0; }

对上述代码进行如下修改,是否改变基本功能:tatic int process(int8_t* input, int point_cnt, int height, int width, int stride, std::vector<float>& boxes, std::vector<float>& objProbs, std::vector<int>& classId, float threshold, int32_t zp, float scale) { int validCount = 0; float thres = unsigmoid(threshold); int8_t thres_i8 = qnt_f32_to_affine(thres, zp, scale); for (int a = 0; a < point_cnt; a++){ int8_t maxClassProbs = 0; int maxClassId = 0; for (int k = 1; k < OBJ_CLASS_NUM; ++k) { int8_t prob = input[(3+k) * point_cnt + a]; if (prob > maxClassProbs) { maxClassId = k; maxClassProbs = prob; } } if (maxClassProbs >= thres_i8) { int8_t rx = input[0 * point_cnt + a]; int8_t ry = input[1 * point_cnt + a]; int8_t rw = input[2 * point_cnt + a]; int8_t rh = input[3 * point_cnt + a]; float box_x = sigmoid(deqnt_affine_to_f32(rx, zp, scale)) * 2.0 - 0.5; float box_y = sigmoid(deqnt_affine_to_f32(ry, zp, scale)) * 2.0 - 0.5; float box_w = sigmoid(deqnt_affine_to_f32(rw, zp, scale)) * 2.0; float box_h = sigmoid(deqnt_affine_to_f32(rh, zp, scale)) * 2.0; objProbs.push_back(sigmoid(deqnt_affine_to_f32(maxClassProbs, zp, scale))); classId.push_back(maxClassId); validCount++; boxes.push_back(box_x); boxes.push_back(box_y); boxes.push_back(box_w); boxes.push_back(box_h); } } return validCount; } int post_process(int8_t* input0, int model_in_h, int model_in_w, float conf_threshold, float nms_threshold, float scale_w, float scale_h, std::vector<int32_t>& qnt_zps, std::vector<float>& qnt_scales, detect_result_group_t* group) { static int init = -1; if (init == -1) { int ret = 0; ret = loadLabelName(LABEL_NALE_TXT_PATH, labels); if (ret < 0) { return -1; } init = 0; } memset(group, 0, sizeof(detect_result_group_t)); std::vector<float> filterBoxes; std::vector<float> objProbs; std::vector<int> classId; // stride 6 int stride0 = 4 + OBJ_CLASS_NUM; int point_cnt = 8400; int validCount0 = 0; validCount0 = process(input0, point_cnt, model_in_h, model_in_w, stride0, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[0], qnt_scales[0]); int validCount = validCount0; // no object detect if (validCount <= 0) { return 0; } std::vector<int> indexArray; for (int i = 0; i < validCount; ++i) { indexArray.push_back(i); } quick_sort_indice_inverse(objProbs, 0, validCount - 1, indexArray); std::set<int> class_set(std::begin(classId), std::end(classId)); for (auto c : class_set) { nms(validCount, filterBoxes, classId, indexArray, c, nms_threshold); } int last_count = 0; group->count = 0; /* box valid detect target */ for (int i = 0; i < validCount; ++i) { if (indexArray[i] == -1 || last_count >= OBJ_NUMB_MAX_SIZE) { continue; } int n = indexArray[i]; float x1 = filterBoxes[n * 4 + 0]; float y1 = filterBoxes[n * 4 + 1]; float x2 = x1 + filterBoxes[n * 4 + 2]; float y2 = y1 + filterBoxes[n * 4 + 3]; int id = classId[n]; float obj_conf = objProbs[i]; group->results[last_count].box.left = (int)(clamp(x1, 0, model_in_w) / scale_w); group->results[last_count].box.top = (int)(clamp(y1, 0, model_in_h) / scale_h); group->results[last_count].box.right = (int)(clamp(x2, 0, model_in_w) / scale_w); group->results[last_count].box.bottom = (int)(clamp(y2, 0, model_in_h) / scale_h); group->results[last_count].prop = obj_conf; char* label = labels[id]; strncpy(group->results[last_count].name, label, OBJ_NAME_MAX_SIZE); // printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left, // group->results[last_count].box.top, // group->results[last_count].box.right, group->results[last_count].box.bottom, label); last_count++; } group->count = last_count; return 0; }

x_train, t_train, x_test, t_test = load_data('F:\\2023\\archive\\train') network = DeepConvNet() network.load_params("deep_convnet_params.pkl") print("calculating test accuracy ... ") sampled = 1000 x_test = x_test[:sampled] t_test = t_test[:sampled] prediect_result = [] for i in x_test: i = np.expand_dims(i, 0) y = network.predict(i) _result = network.predict(i) _result = softmax(_result) result = np.argmax(_result) prediect_result.append(int(result)) acc_number = 0 err_number = 0 for i in range(len(prediect_result)): if prediect_result[i] == t_test[i]: acc_number += 1 else: err_number += 1 print("预测正确数:", acc_number) print("预测错误数:", err_number) print("预测总数:", x_test.shape[0]) print("预测正确率:", acc_number / x_test.shape[0]) classified_ids = [] acc = 0.0 batch_size = 100 for i in range(int(x_test.shape[0] / batch_size)): tx = x_test[i * batch_size:(i + 1) * batch_size] tt = t_test[i * batch_size:(i + 1) * batch_size] y = network.predict(tx, train_flg=False) y = np.argmax(y, axis=1) classified_ids.append(y) acc += np.sum(y == tt) acc = acc / x_test.shape[0] classified_ids = np.array(classified_ids) classified_ids = classified_ids.flatten() max_view = 20 current_view = 1 fig = plt.figure() fig.subplots_adjust(left=0, right=1, bottom=0, top=1, hspace=0.2, wspace=0.2) mis_pairs = {} for i, val in enumerate(classified_ids == t_test): if not val: ax = fig.add_subplot(4, 5, current_view, xticks=[], yticks=[]) ax.imshow(x_test[i].reshape(28, 28), cmap=plt.cm.gray_r, interpolation='nearest') mis_pairs[current_view] = (t_test[i], classified_ids[i]) current_view += 1 if current_view > max_view: break print("======= 错误预测结果展示 =======") print("{view index: (label, inference), ...}") print(mis_pairs) plt.show()

color0 = ['#FF76A2','#24ACE6'] color_js0="""new echarts.graphics.LinearGradient(0,1,0,0, [{offset:0,color:'#FFCOCB'},{offset:1,color:'#ed1941'}],false)""" color_js1="""new echarts.graphics.LinearGradient(0,1,0,0, [{offset:0,color:'#FFFFFF'},{offset:1,color:'#009ad6'}],false)""" t1=Timeline() for i in range(0,len(data_bj)): corrdy_high = list(data_bj['最高温度'])[i] corrdx = list(data_bj['日期'])[i] corrdy_low = list(data_bj['最低温度'])[i] x_max = list(data_bj['日期'])[i]+datetime.timedelta(days=10) y_max = int(max(list(data_bj['最高温度'])[0:i+1]))+3 y_min = int(max(list(data_bj['最低温度'])[0:i+1]))-3 title_date = listlist(data_bj['日期'])[i].strftime('%Y-%m-%d') c=( Line( init_opts=opts.InitOpts( theme='dark', #设置动画 animation_opts=opts.AnimationOpts(animation_delay_update=800), #设置宽度、高度 width='1500px', height='900px',) ) .add_xaxis(list(data_bj['日期'])[0:i]) .add_yaxis( series_name="", y_axis=list(data_bj['最高温度'])[0:i], is_smooth=True,is_symbol_show=False, linestyle_opts={ 'normal':{ 'width':3, 'shadowColor':'rgba(0,0,0,0.5)', 'shadowBlur':5, 'shadowOffsetY':10, 'shadowOffsetX':10, 'curve':0.5, 'color':JsCode(color_js0) } }, itemstyle_opts={ "normal":{ "color":JsCode( """new echarts.graphics.LinearGradient(0,0,0,1,[{offset:0,color:'#ed1941'},{offset:1,color:'#009ad6'}],false) """), "barBorderRadius":[45,45,45,45], "shadowColor":"rgb(0,160,221)" } }, ) .add_yaxis( series_name="", y_axis=list(data_bj['最低温度'])[0:i], is_smooth=True,is_symbol_show=False, itemstyle_opts=opts.ItemStyleOpts(color=JSCode(color_js1)), linestyle_opts={ 'normal':{ 'width':3, 'shadowColor':'rgba(0,0,0,0.5)', 'shadowBlur':5, 'shadowOffsetY':10, 'shadowOffsetX':10, 'curve':0.5, 'color':JsCode(color_js1) } }, ) .set_global_opts( title_opts=opts.TitleOpts("莆田2022年每日最高最低温度变化\n\n{}".format(title_date),pos_left=330,padding=[30,20]), xaxis_opts=opts.AxisOpts.AxisOpts(type="time",max_=x_max), yaxis_opts=opts.AxisOpts.AxisOpts(min_=y_min,max_=y_max), ) ) t1.add(c,"{}".format(list(data_bj['日期'])[i])) t1.add_schema( axis_type='time', play_interval=100,#播放速度 pos_bottom="-29px", is_loop_play=False,#是否循环播放 width="780px", pos_left="30px", is_auto_play=True, is_timeline_show=False) t1.render_notebook() 代码存在什么问题

这段代码什么意思def run_posmap_300W_LP(bfm, image_path, mat_path, save_folder, uv_h = 256, uv_w = 256, image_h = 256, image_w = 256): # 1. load image and fitted parameters image_name = image_path.strip().split('/')[-1] image = io.imread(image_path)/255. [h, w, c] = image.shape info = sio.loadmat(mat_path) pose_para = info['Pose_Para'].T.astype(np.float32) shape_para = info['Shape_Para'].astype(np.float32) exp_para = info['Exp_Para'].astype(np.float32) # 2. generate mesh # generate shape vertices = bfm.generate_vertices(shape_para, exp_para) # transform mesh s = pose_para[-1, 0] angles = pose_para[:3, 0] t = pose_para[3:6, 0] transformed_vertices = bfm.transform_3ddfa(vertices, s, angles, t) projected_vertices = transformed_vertices.copy() # using stantard camera & orth projection as in 3DDFA image_vertices = projected_vertices.copy() image_vertices[:,1] = h - image_vertices[:,1] - 1 # 3. crop image with key points kpt = image_vertices[bfm.kpt_ind, :].astype(np.int32) left = np.min(kpt[:, 0]) right = np.max(kpt[:, 0]) top = np.min(kpt[:, 1]) bottom = np.max(kpt[:, 1]) center = np.array([right - (right - left) / 2.0, bottom - (bottom - top) / 2.0]) old_size = (right - left + bottom - top)/2 size = int(old_size*1.5) # random pertube. you can change the numbers marg = old_size*0.1 t_x = np.random.rand()*marg*2 - marg t_y = np.random.rand()*marg*2 - marg center[0] = center[0]+t_x; center[1] = center[1]+t_y size = size*(np.random.rand()*0.2 + 0.9) # crop and record the transform parameters src_pts = np.array([[center[0]-size/2, center[1]-size/2], [center[0] - size/2, center[1]+size/2], [center[0]+size/2, center[1]-size/2]]) DST_PTS = np.array([[0, 0], [0, image_h - 1], [image_w - 1, 0]]) tform = skimage.transform.estimate_transform('similarity', src_pts, DST_PTS) cropped_image = skimage.transform.warp(image, tform.inverse, output_shape=(image_h, image_w)) # transform face position(image vertices) along with 2d facial image position = image_vertices.copy() position[:, 2] = 1 position = np.dot(position, tform.params.T) position[:, 2] = image_vertices[:, 2]*tform.params[0, 0] # scale z position[:, 2] = position[:, 2] - np.min(position[:, 2]) # translate z # 4. uv position map: render position in uv space uv_position_map = mesh.render.render_colors(uv_coords, bfm.full_triangles, position, uv_h, uv_w, c = 3) # 5. save files io.imsave('{}/{}'.format(save_folder, image_name), np.squeeze(cropped_image)) np.save('{}/{}'.format(save_folder, image_name.replace('jpg', 'npy')), uv_position_map) io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_posmap.jpg')), (uv_position_map)/max(image_h, image_w)) # only for show # --verify # import cv2 # uv_texture_map_rec = cv2.remap(cropped_image, uv_position_map[:,:,:2].astype(np.float32), None, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT,borderValue=(0)) # io.imsave('{}/{}'.format(save_folder, image_name.replace('.jpg', '_tex.jpg')), np.squeeze(uv_texture_map_rec))

请补全代码#include <iostream> #include <cstdlib> #include <cmath> #include <cstring> #include <ctime> using namespace std; /* 请编程实现一个简易的屏幕窗口模拟,具体要求如下: * 编写 CPoint 类,描述二维平面内的一个坐标点,包含 x,y 两个坐标,重载 >> 运算符以实现输出形如 (x,y) 的信息。 * 编写 CWindow 类,描述平面上的一个窗口,包含如下信息: int id ,窗口唯一标识,为了保证唯一性,可以使用 (int)time(NULL) 返回的时间戳赋值。 char title[255] ,窗口标题 CPoint topleft,bottomright ,左上角和右下角的坐标 两种形态的构造函数: 提供标题和两点坐标的:CWindow(const char* title,CPoint topleft,CPoint bottomright) 提供标题和左上角坐标以及窗口高宽的:CWindow(const char* title,CPoint topleft,int width,int height) 一个静态成员 CWindow* topmost ,指向当前活动窗口,可以初始化为 nullptr 一个 Activate() 方法,将当前窗口置为活动窗口 重载 >> 运算符输出窗口信息,形如 title (x,y)-(x,y) ,参见测试用例输出结果 * 其它成员如果需要请自行编写,例如 CPoint 可以设计 getX 和 getY 接口便于 CWindow 根据高宽计算右下角坐标 主程序生成了三个窗口并随机激活了一个,然后输出了激活后窗口的信息,请参考测试用例的输出进行编程。 / 点击在此输入一行或多行代码 //主程序 int main() { //主程序代码仅为测试类的设计而编写 //伪随机化,真随机请使用 srand(time(NULL)); //srand(2022); //最大窗口数量 const int MAX = 3; / 注意屏幕的坐标系为: (0,0) _____________x | | | y | */ //生成 MAX 个窗口对象存储在数组中 CWindow windows[MAX] {{"notepad",CPoint(10,20),CPoint(20,5)}, //提供两点坐标初始化 {"mspaint",CPoint(10,20),5,6}, //提供一点坐标加高宽初始化 {"code",CPoint(2,20),CPoint(30,1)} //提供两点坐标初始化 }; //随机选择一个窗口激活到前台 windows[rand()%MAX].Activate(); //输出这个前台窗口信息 cout << *CWindow::topmost << endl; return 0; }

大家在看

recommend-type

CST PCB电磁兼容解决方案

印制电路板(PCB:Printed Circuit Board)目前已广泛应用于电子产品中。随着电子技术的飞速发展,芯片的频率越来越高,PCB,特别是高速PCB面临着各种电磁兼容问题。传统的基于路的分析方法已经不能准确地描述PCB上各走线的传输特性,因此需要采用基于电磁场的分析方法充分考虑PCB上各分布式参数来分析PCB的电磁兼容问题。   CST是目前的纯电磁场仿真软件公司。其产品广泛应用于通信、国防、自动化、电子和医疗设备等领域。2007年CST收购并控股了德国Simlab公司,将其下整个团队和软件全面纳入CST的管理和软件开发计划之中,同时在原有PCBMod软件基础上开发全新算法和功能
recommend-type

小华HC32L19X SPI 驱片外FLASH 例程

小华HC32L19X SPI 驱片外FLASH 例程
recommend-type

CISP-DSG 数据安全培训教材课件标准版

“ 注册数据安全治理专业人员”,英文为 Certified Information Security Professional - Data Security Governance , 简称 CISP-DSG , 是中国信息安全测评中心联合天融信开发的针对数据安全人才的培养认证, 是业界首个针对数据安全治理方向的国家级认证培训。 CISP-DSG 知识体系结构共包含四个知识类,分别为: 信息安全知识:主要包括信息安全保障、信息安全评估、网络安全监管、信息安全支撑技术相关的知识。 数据安全基础体系:主要包括结构化数据应用、非结构化数据应用、大数据应用、数据生命周期等相关的技术知识。 数据安全技术体系:主要包括数据安全风险、结构化数据安全技术、非结构数据安全技术、大数据安全技术、数据安全运维相关知识和实践。 数据安全管理体系:主要包括数据安全制度、数据安全标准、数据安全策略、数据安全规范、数据安全规划相关技术知识和实践。
recommend-type

微信hook(3.9.10.19)

微信hook(3.9.10.19)
recommend-type

汽车电子通信协议SAE J2284

改文档为美国汽车协会发布的通信网络物理层的协议

最新推荐

recommend-type

CentOS 6下Percona XtraBackup RPM安装指南

### Percona XtraBackup RPM安装知识点详解 #### 一、Percona XtraBackup简介 Percona XtraBackup是一个开源的MySQL数据库热备份工具,它能够进行非阻塞的备份,并支持复制和压缩功能,大大降低了备份过程对数据库性能的影响。该工具对MySQL以及衍生的数据库系统(如Percona Server和MariaDB)都非常友好,并广泛应用于需要高性能和备份安全性的生产环境中。 #### 二、Percona XtraBackup安装前提 1. **操作系统环境**:根据给出的文件信息,安装是在CentOS 6系统环境下进行的。CentOS 6已经到达其官方生命周期的终点,因此在生产环境中使用时需要考虑到安全风险。 2. **SELinux设置**:在安装Percona XtraBackup之前,需要修改`/etc/sysconfig/selinux`文件,将SELinux状态设置为`disabled`。SELinux是Linux系统下的一个安全模块,通过强制访问控制保护系统安全。禁用SELinux能够降低安装过程中由于安全策略造成的问题,但在生产环境中,建议仔细评估是否需要禁用SELinux,或者根据需要进行相应的配置调整。 #### 三、RPM安装过程说明 1. **安装包下载**:在安装Percona XtraBackup时,需要使用特定版本的rpm安装包,本例中为`percona-xtrabackup-24-2.4.5-1.el6.x86_64.rpm`。RPM(RPM包管理器)是一种在Linux系统上广泛使用的软件包管理器,其功能包括安装、卸载、更新和查询软件包。 2. **执行安装命令**:通过命令行执行rpm安装命令(例如:`rpm -ivh percona-xtrabackup-24-2.4.5-1.el6.x86_64.rpm`),这个命令会安装指定的rpm包到系统中。其中,`-i`代表安装(install),`-v`代表详细模式(verbose),`-h`代表显示安装进度(hash)。 #### 四、CentOS RPM安装依赖问题解决 在进行rpm安装过程中,可能会遇到依赖问题。系统可能提示缺少某些必要的库文件或软件包。安装文件名称列表提到了一个word文档,这很可能是解决此类依赖问题的步骤或说明文档。在CentOS中,可以通过安装`yum-utils`工具包来帮助解决依赖问题,例如使用`yum deplist package_name`查看依赖详情,然后使用`yum install package_name`来安装缺少的依赖包。此外,CentOS 6是基于RHEL 6,因此对于Percona XtraBackup这类较新的软件包,可能需要从Percona的官方仓库获取,而不是CentOS自带的旧仓库。 #### 五、CentOS 6与Percona XtraBackup版本兼容性 `percona-xtrabackup-24-2.4.5-1.el6.x86_64.rpm`表明该安装包对应的是Percona XtraBackup的2.4.5版本,适用于CentOS 6平台。因为CentOS 6可能不会直接支持Percona XtraBackup的最新版本,所以在选择安装包时需要确保其与CentOS版本的兼容性。对于CentOS 6,通常需要选择专门为老版本系统定制的软件包。 #### 六、Percona XtraBackup的高级功能 Percona XtraBackup不仅支持常规的备份和恢复操作,它还支持增量备份、压缩备份、流式备份和传输加密等高级特性。这些功能可以在安装文档中找到详细介绍,如果存在word文档说明解决问题的过程,则该文档可能也包含这些高级功能的配置和使用方法。 #### 七、安装后配置与使用 安装完成后,通常需要进行一系列配置才能使用Percona XtraBackup。这可能包括设置环境变量、编辑配置文件以及创建必要的目录和权限。关于如何操作这些配置,应该参考Percona官方文档或在word文档中查找详细步骤。 #### 八、维护与更新 安装后,应定期检查Percona XtraBackup的维护和更新,确保备份工具的功能与安全得到保障。这涉及到查询可用的更新版本,并根据CentOS的包管理器(如yum或rpm)更新软件包。 #### 总结 Percona XtraBackup作为一款强大的MySQL热备份工具,在生产环境中扮演着重要角色。通过RPM包在CentOS系统中安装该工具时,需要考虑操作系统版本、安全策略和依赖问题。在安装和配置过程中,应严格遵守官方文档或问题解决文档的指导,确保备份的高效和稳定。在实际应用中,还应根据实际需求进行配置优化,以达到最佳的备份效果。
recommend-type

【K-means与ISODATA算法对比】:聚类分析中的经典与创新

# 摘要 聚类分析作为数据挖掘中的重要技术,用于发现数据中的自然分布模式。本文首先介绍了聚类分析的基本概念及其意义,随后深入探讨了两种广泛使用的聚类算法:K-means和ISODATA。文章详细解析了这两个算法的原理、实现步骤及各自的优缺点,通过对比分析,展示了它们在不同场景下的适用性和性能差异。此外,本文还讨论了聚类算法的发展趋势,包括算法优化和新兴领域的应用前景。最
recommend-type

jupyter notebook没有opencv

### 如何在Jupyter Notebook中安装和使用OpenCV #### 使用`pip`安装OpenCV 对于大多数用户而言,最简单的方法是通过`pip`来安装OpenCV库。这可以通过运行以下命令完成: ```bash pip install opencv-python pip install opencv-contrib-python ``` 上述命令会自动处理依赖关系并安装必要的组件[^3]。 #### 利用Anaconda环境管理工具安装OpenCV 另一种推荐的方式是在Anaconda环境中安装OpenCV。这种方法的优势在于可以更好地管理和隔离不同项目的依赖项。具体
recommend-type

QandAs问卷平台:基于React和Koa的在线调查工具

### 知识点概述 #### 标题解析 **QandAs:一个问卷调查平台** 标题表明这是一个基于问卷调查的Web平台,核心功能包括问卷的创建、编辑、发布、删除及统计等。该平台采用了现代Web开发技术和框架,强调用户交互体验和问卷数据处理。 #### 描述详细解析 **使用React和koa构建的问卷平台** React是一个由Facebook开发和维护的JavaScript库,用于构建用户界面,尤其擅长于构建复杂的、数据频繁变化的单页面应用。该平台的前端使用React来实现动态的用户界面和组件化设计。 Koa是一个轻量级、高效、富有表现力的Web框架,用于Node.js平台。它旨在简化Web应用的开发,通过使用async/await,使得异步编程更加简洁。该平台使用Koa作为后端框架,处理各种请求,并提供API支持。 **在线演示** 平台提供了在线演示的链接,并附有访问凭证,说明这是一个开放给用户进行交互体验的问卷平台。 **产品特点** 1. **用户系统** - 包含注册、登录和注销功能,意味着用户可以通过这个平台进行身份验证,并在多个会话中保持登录状态。 2. **个人中心** - 用户可以修改个人信息,这通常涉及到用户认证模块,允许用户查看和编辑他们的账户信息。 3. **问卷管理** - 用户可以创建调查表,编辑问卷内容,发布问卷,以及删除不再需要的问卷。这一系列功能说明了平台提供了完整的问卷生命周期管理。 4. **图表获取** - 用户可以获取问卷的统计图表,这通常需要后端计算并结合前端可视化技术来展示数据分析结果。 5. **搜索与回答** - 用户能够搜索特定的问卷,并进行回答,说明了问卷平台应具备的基本互动功能。 **安装步骤** 1. **克隆Git仓库** - 使用`git clone`命令从GitHub克隆项目到本地。 2. **进入项目目录** - 通过`cd QandAs`命令进入项目文件夹。 3. **安装依赖** - 执行`npm install`来安装项目所需的所有依赖包。 4. **启动Webpack** - 使用Webpack命令进行应用的构建。 5. **运行Node.js应用** - 执行`node server/app.js`启动后端服务。 6. **访问应用** - 打开浏览器访问`http://localhost:3000`来使用应用。 **系统要求** - **Node.js** - 平台需要至少6.0版本的Node.js环境,Node.js是一个基于Chrome V8引擎的JavaScript运行环境,它使JavaScript能够在服务器端运行。 - **Webpack** - 作为现代JavaScript应用程序的静态模块打包器,Webpack可以将不同的模块打包成一个或多个包,并处理它们之间的依赖关系。 - **MongoDB** - 该平台需要MongoDB数据库支持,MongoDB是一个面向文档的NoSQL数据库,它使用易于理解的文档模型来存储数据,并且能够处理大量的数据和高并发读写。 #### 标签解析 - **React** - 应用的前端开发框架。 - **Redux** - 可能用于管理应用的状态,尽管在描述中没有提及,但标签的存在暗示了它可能被集成在项目中。 - **nodejs** - 表明整个平台是基于Node.js构建的。 - **koa** - 应用的后端开发框架。 - **questionnaire** - 强调该平台的主要用途是处理问卷。 - **KoaJavaScript** - 这个标签可能表明整个项目用JavaScript和Koa框架开发。 #### 压缩包子文件的文件名称列表 **QandAs-master** 这个文件名说明,这是该问卷平台项目的源代码仓库的主分支。在Git中,“master”通常是指主分支,包含了所有已经发布或准备发布的代码版本。 ### 结语 通过以上分析,QandAs这个问卷调查平台具备了完整的问卷生命周期管理功能,并使用了现代的前端和后端技术构建。它提供了一个便捷的在线问卷制作和数据分析平台,并且可以完全通过Git进行版本控制和源代码管理。开发者可以利用这个平台的标签和描述信息来理解项目结构和技术栈,以便进行学习、扩展或维护。
recommend-type

RLE编码与解码原理:揭秘BMP图像处理的关键步骤,提升解码效率

# 摘要 本文深入探讨了RLE(Run-Length Encoding)编码与解码的基础知识、原理和实现,以及其在BMP图像处理中的应用。RLE作为一种简单的无损数据压缩技术,通过识别数据中重复出现的序列来减少文件大小。本文详细解释了RLE的编码和解码原
recommend-type

PHP XDEBUG

<think>嗯,用户让我介绍PHP XDEBUG,我得先回想一下自己对这个工具的了解。XDEBUG是PHP的一个扩展,主要用于调试和性能分析。可能需要从它的主要功能开始讲起,比如调试器、堆栈跟踪、代码覆盖分析等等。 首先,用户可能是个PHP开发者,遇到了调试代码的问题,或者想优化代码性能。他们可能听说过XDEBUG,但不太清楚具体怎么用或者有什么功能。需要解释清楚XDEBUG的作用,以及如何帮助开发者提高效率。 接下来要分点说明XDEBUG的功能,比如调试器支持,设置断点、单步执行,这些对于调试非常有用。然后堆栈跟踪,当出现错误时显示详细的调用信息,能帮助快速定位问题。代码覆盖率分析对单
recommend-type

深入探究DotNetBar9.5源代码:打造专业Windows界面

从给定文件信息中,我们可以了解到以下知识点: 【标题】:"DotNetBar9.5源代码" 的知识点包括: 1. DotNetBar 是一个工具箱:它是一个包含多种控件的集合,用于帮助开发人员创建具有专业外观的用户界面。 2. 提供的控件数量:DotNetBar 包含了56个Windows Form控件。 3. 控件的编程语言:这些控件是用C#语言编写的。 4. 用户界面风格:DotNetBar 支持创建符合Office 2007、Office 2003以及Office 2010风格的用户界面。 5. 主题支持:控件支持Windows 7和Windows XP等操作系统的主题。 6. 功能特点:它包括了Office 2007风格的 Ribbon 控件,这是一个流行的用户界面设计,用于提供一个带有选项卡的导航栏,用户可以在此快速访问不同的功能。 【描述】:"非常漂亮的.Net控件源代码" 的知识点包括: 1. 设计美观:DotNetBar 的设计被描述为“非常漂亮”,意味着它提供了高质量的视觉效果,可以吸引用户的注意。 2. 面向Windows Forms应用程序:这个工具箱是专门为了Windows Forms应用程序设计的,这是.NET Framework中用于构建基于Windows的桌面应用程序的UI框架。 3. 用户界面的灵活性:通过使用DotNetBar提供的控件,开发者可以轻松地实现不同的用户界面设计,以满足不同应用场景的需求。 4. 开发效率:它能帮助开发者减少UI设计和实现的时间,因为许多常见的界面元素已经预置在控件中。 5. 功能全面:DotNetBar 为开发者提供了创建后台应用程序菜单的全面支持,这些菜单符合Office 2010的风格。 【标签】:"DotNetBar" 的知识点包括: 1. 产品标识:标签指明了这个源代码是属于DotNetBar产品家族。 2. 搜索和识别:开发者可以通过这个标签快速识别和检索到相关的产品或资源。 【压缩包子文件的文件名称列表】:"DNBSRC95" 的知识点包括: 1. 文件命名:DNBSRC95代表了DotNetBar 9.5版本的源代码压缩包。 2. 版本信息:这个名称说明了文件是DotNetBar软件的9.5版本,暗示了可能存在以前的版本,以及可能的后续更新或新版本。 3. 文件类型:文件名中的“压缩包”表明了这是一个被打包的文件集合,可能包含了多个源代码文件。 综上所述,DotNetBar9.5源代码提供了一套丰富的控件集合,用C#编写,设计遵循现代的用户界面风格,特别适合于希望为他们的应用程序提供美观、专业外观的Windows Forms开发人员。开发者可以利用这些控件快速地构建符合最新操作系统的视觉主题的应用程序。
recommend-type

【PRODAVE协议深度解析】:掌握S7-300 PLC通信的幕后英雄

# 摘要 PRODAVE协议作为工业自动化领域中常用的通信协议,为S7-300 PLC等设备提供了稳定和高效的通信机制。本文首先概述了PRODAVE协议的架构、组件以及关键功能,随后深入探讨了其基础通信机制,包括数据封装格式、缓冲管理、连接建立和维护。接着,文章详细介绍了PRODAVE协议在S7-300 PLC通信中的具体应用,包括读写操作、诊断和监控等。此外,
recommend-type

ubuntu server 安装教程

### 安装 Ubuntu Server 的逐步指南 #### 准备工作 为了成功安装 Ubuntu Server,需准备一台可启动的计算机以及一个有效的互联网连接。确保已备份重要数据以防万一。 #### 下载 ISO 文件并创建启动介质 访问官方 Ubuntu 网站下载最新版本的服务器版 ISO 镜像文件[^4]。使用 Rufus 或 Etcher 工具将此镜像写入 USB 闪存驱动器或其他合适的媒介上以便后续引导安装过程。 #### 启动安装程序 重启目标机器并将 BIOS/UEFI 设置更改为优先从所制作好的 LiveUSB 设备启动。一旦进入 GRUB 菜单界面,请选择“Inst
recommend-type

人工智能与遗传算法结合的入门指南及展望

标题“人工智能和遗传算法的结合(推荐必读)”和描述中提供了两个核心知识点:人工智能(AI)和遗传算法(GA),以及它们结合的意义和应用场景。 首先,人工智能是一种模拟、延伸和扩展人的智能,通过计算机和其他设备实现的理论、方法、技术及应用系统的科学总称。在人工智能的领域中,包含多种子领域,如机器学习、计算机视觉、自然语言处理、专家系统等。人工智能的关键在于创建能够自主学习和做出决策的算法和机器。而机器学习是人工智能的一个重要分支,它让机器通过大量数据训练,从经验中学习,做出决策或预测。其中,人工神经网络(ANN)是机器学习中一种模拟生物神经系统的结构和功能的算法,通过大量的节点(即人工神经元)互联形成网络,以解决复杂的非线性问题。 遗传算法是一类模拟生物进化过程的搜索优化算法。遗传算法通常通过模拟自然选择和遗传学的原理,通过交叉(crossover)、变异(mutation)和选择(selection)等操作迭代地产生候选解,并对问题空间进行搜索,最终收敛于最优解或满意解。遗传算法特别适合处理复杂问题,尤其是当问题的搜索空间很大、问题模型不明确、传统优化方法难以应用时。 将人工智能中的机器学习算法(如人工神经网络)与遗传算法相结合,形成了一种新的研究方向,即利用遗传算法对人工神经网络进行优化。这种结合主要体现在以下几个方面: 1. 网络结构优化:遗传算法可以用来自动设计人工神经网络的拓扑结构,包括神经元的数目、层次、以及连接方式等,从而提高网络的性能。 2. 权重调整:在训练神经网络时,遗传算法可用于优化网络的权重和偏置参数。通过模拟自然遗传和进化过程,可以在全局搜索空间中找到更优的参数配置。 3. 特征选择:在进行模式识别或数据分析时,遗传算法可以帮助选择最有代表性的特征,提高学习效率和分类准确性。 4. 超参数优化:在机器学习模型训练中,需要设置多种超参数,如学习率、批次大小、迭代次数等。遗传算法可以辅助确定这些超参数的最佳组合。 5. 集成学习:在多个模型集成以提高泛化能力时,遗传算法可以用于选择或构造最优的模型组合。 在给出的描述中提到,“适合初学者 对人工智能和遗传算法有一定的基础知识亲测可用”,这说明该资料适合已经初步了解人工智能和遗传算法概念的读者,并且推荐初学者在实践中加深理解。文档可能包含了理论知识与实际操作的结合,提供了学习案例或实验指导。 至于提供的文件名称列表中的“README.md”,这通常是一个包含项目文档的文件,可能提供了关于如何使用相关材料、资源和数据的说明。而“人工神经网络与遗传算法的结合:进展及展望.pdf”则很可能是包含了人工神经网络与遗传算法结合的最新研究成果、应用案例分析以及未来发展趋势的学术论文或报告。 从这些文件中,可以学到如何将遗传算法应用于优化人工神经网络的各个方面,以及如何处理与这两种算法结合相关的挑战和问题。这些知识对于从事数据科学、机器学习、模式识别等相关领域的研究人员和工程师是极其宝贵的。