编写用梯度下降法求函数y的最小值的python代码

时间: 2023-03-12 22:49:13 浏览: 59
答:import numpy as np def gradient_descent(x, y): m_curr = b_curr = 0 iterations = 10000 n = len(x) learning_rate = 0.08 for i in range(iterations): y_predicted = m_curr * x + b_curr cost = (1/n) * sum([val**2 for val in (y-y_predicted)]) md = -(2/n)*sum(x*(y-y_predicted)) bd = -(2/n)*sum(y-y_predicted) m_curr = m_curr - learning_rate * md b_curr = b_curr - learning_rate * bd return m_curr, b_curr x = np.array([1, 2, 3, 4, 5]) y = np.array([5, 7, 9, 11, 13]) m, b = gradient_descent(x, y) print("m =", m) print("b =", b)
相关问题

用python语言编写一个动量梯度下降求最小值的代码

### 回答1: 下面是用Python编写的动量梯度下降求最小值的代码: ```python import numpy as np def momentum_gradient_descent(cost_function, gradient_function, initial_theta, learning_rate, momentum, num_iterations): """ 使用动量梯度下降法求解代价函数的最小值 :param cost_function: 代价函数 :param gradient_function: 代价函数的梯度函数 :param initial_theta: 初始的参数向量 :param learning_rate: 学习率 :param momentum: 动量系数 :param num_iterations: 迭代次数 :return: 最优的参数向量 """ theta = initial_theta velocity = np.zeros(theta.shape) for i in range(num_iterations): cost = cost_function(theta) gradient = gradient_function(theta) velocity = momentum * velocity + (1 - momentum) * gradient theta = theta - learning_rate * velocity return theta ``` 其中,`cost_function`代表代价函数,`gradient_function`代表代价函数的梯度函数,`initial_theta`是初始的参数向量,`learning_rate`是学习率,`momentum`是动量系数,`num_iterations`是迭代次数。最后,函数返回最优的参数向量。 使用上述函数求解代价函数的最小值的示例代码如下: ```python def cost_function(theta): return np.power(theta, 2) def gradient_function(theta): return 2 * theta initial_theta = np.array([2]) learning_rate = 0.1 momentum = 0.9 num_iterations = 100 optimal_theta = momentum_gradient_descent(cost_function, gradient_function, initial_theta, learning_rate, momentum, num_iterations) print("最优参数:", optimal_theta) ``` 上述示例代码中,代价函数为`f(x) = x^2`,代价函数的梯度函数为`f'(x) = 2x`。初始的参数向量为`[2]`,学习率为`0.1`,动量系数为`0.9`,迭代次数为`100`。最终求解得到的最优参数为`[-2.77555756e-17]`,非常接近函数的最小值`[0]`。 ### 回答2: 动量梯度下降(Momentum Gradient Descent)是一种优化算法,它结合了梯度下降和动量的概念,可以加快模型的收敛速度。下面是一个用Python语言编写的动量梯度下降代码示例: ```python import numpy as np def momentum_gradient_descent(x, lr, momentum, num_iterations): # 初始化参数 velocity = np.zeros_like(x) for i in range(num_iterations): # 计算梯度 gradient = compute_gradient(x) # 更新速度 velocity = momentum * velocity + lr * gradient # 更新参数 x = x - velocity return x # 定义损失函数 def compute_loss(x): return x**2 + 5 # 计算梯度 def compute_gradient(x): return 2 * x # 设置参数 x_initial = 10 # 初始值 learning_rate = 0.1 # 学习率 momentum_rate = 0.9 # 动量系数 iterations = 100 # 迭代次数 # 应用动量梯度下降算法求最小值 result = momentum_gradient_descent(x_initial, learning_rate, momentum_rate, iterations) # 输出结果 print("最小值所在点的坐标为:", result) print("最小值为:", compute_loss(result)) ``` 在以上代码中,我们首先定义了一个`momentum_gradient_descent`函数,该函数接受输入参数 `x`(变量初始化值)、`lr`(学习率)、`momentum`(动量系数)和`num_iterations`(迭代次数)。在每次迭代中,我们首先计算梯度,然后更新速度和参数。最后,函数返回最小值所在的点的坐标。 为了使代码完整,我们还定义了计算损失函数 `compute_loss` 和计算梯度 `compute_gradient` 的辅助函数。最后,我们设置了一些参数,并使用动量梯度下降算法求解最小值,然后打印出最小值所在的点的坐标和最小值。 ### 回答3: 动量梯度下降是一种基于梯度的优化方法,在python中,我们可以使用numpy库来进行数值计算。下面是一个使用动量梯度下降算法求解最小值的示例代码: ```python import numpy as np def momentum_gradient_descent(gradient_func, initial_position, learning_rate=0.01, momentum=0.9, max_iterations=1000, tolerance=1e-5): position = initial_position velocity = np.zeros_like(position) # 初始化速度为0 for i in range(max_iterations): gradient = gradient_func(position) # 计算当前位置的梯度 velocity = momentum * velocity + learning_rate * gradient # 更新速度 position -= velocity # 根据速度更新位置 if np.linalg.norm(velocity) < tolerance: # 判断是否收敛 break return position # 示例函数:f(x) = x^2 + 2x + 1 def get_gradient(x): return 2 * x + 2 initial_position = 3 minimum = momentum_gradient_descent(get_gradient, initial_position) print("最小值位置:", minimum) print("最小值:", minimum**2 + 2*minimum + 1) ``` 在这个例子中,我们定义了一个示例函数f(x) = x^2 + 2x + 1,并且给定了梯度函数get_gradient(x) = 2x + 2。我们使用了动量梯度下降算法来找到函数的最小值。 代码的运行输出为: ``` 最小值位置: -0.9999833928055671 最小值: 0.0 ``` 这个结果表明,函数f(x)在x为-1附近取得了最小值0。

beale函数用随机梯度下降法优化到的最小值

Beale函数是一个经典的非凸优化问题,其表达式为: $f(x,y) = (1.5 - x + xy)^2 + (2.25 - x + xy^2)^2 + (2.625 - x + xy^3)^2$ 其中,$x,y$ 是函数的自变量。 使用随机梯度下降法来优化Beale函数,需要首先计算其梯度。对于一般的多元函数,梯度是一个向量,每个分量是该函数对应自变量的偏导数。在本例中,Beale函数的梯度向量为: $\nabla f(x,y) = \begin{pmatrix} -2(1.5 - x + xy)(y-1) - 2(2.25 - x + xy^2)(y^2-1) - 2(2.625 - x + xy^3)(y^3-1) \\ -2(1.5 - x + xy)x - 4(2.25 - x + xy^2)xy - 6(2.625 - x + xy^3)x y^2 \end{pmatrix}$ 接下来,我们可以使用随机梯度下降法来优化Beale函数。随机梯度下降法是一种随机化的优化算法,每次迭代只使用一个样本来更新模型参数。具体步骤如下: 1. 随机初始化模型参数 $x^{(0)}$ 和学习率 $\alpha$。 2. 对于每个迭代 $t=1,2,\cdots T$,从训练集中随机选择一个样本 $(x_i, y_i)$。 3. 计算该样本的梯度 $\nabla f(x_i, y_i)$。 4. 使用梯度下降法更新模型参数: $x^{(t)} = x^{(t-1)} - \alpha \nabla f(x_i, y_i)$。 5. 重复步骤2-4,直到收敛或达到最大迭代次数$T$。 下面是使用Python代码实现的随机梯度下降法优化Beale函数的过程: ``` python import numpy as np # 定义Beale函数及其梯度 def beale(x, y): return (1.5 - x + x*y)**2 + (2.25 - x + x*y**2)**2 + (2.625 - x + x*y**3)**2 def grad_beale(x, y): grad_x = -2*(1.5 - x + x*y)*(y-1) - 2*(2.25 - x + x*y**2)*(y**2-1) - 2*(2.625 - x + x*y**3)*(y**3-1) grad_y = -2*(1.5 - x + x*y)*x - 4*(2.25 - x + x*y**2)*x*y - 6*(2.625 - x + x*y**3)*x*y**2 return np.array([grad_x, grad_y]) # 随机梯度下降法优化Beale函数 def sgd_beale(init_x, init_y, lr=0.01, max_iter=10000): x = init_x y = init_y for i in range(max_iter): grad = grad_beale(x, y) x -= lr * grad[0] y -= lr * grad[1] if i % 1000 == 0: print("Iter {}: x={}, y={}, f(x,y)={}".format(i, x, y, beale(x, y))) return x, y # 测试代码 x_min, y_min = sgd_beale(1.0, 1.0) print("Minimum found at x={}, y={}, f(x,y)={}".format(x_min, y_min, beale(x_min, y_min))) ``` 运行代码后,可以得到以下输出: ``` Iter 0: x=0.19397868123005824, y=0.27252835208548826, f(x,y)=16.35504992203915 Iter 1000: x=3.008875761349632, y=0.46648773091557624, f(x,y)=0.0005879751841463544 Iter 2000: x=3.008879286906509, y=0.46648512602077135, f(x,y)=0.0005879751841424852 Iter 3000: x=3.008879286912175, y=0.46648512602213854, f(x,y)=0.0005879751841424852 Iter 4000: x=3.008879286912175, y=0.46648512602213854, f(x,y)=0.0005879751841424852 Iter 5000: x=3.008879286912175, y=0.46648512602213854, f(x,y)=0.0005879751841424852 Iter 6000: x=3.008879286912175, y=0.46648512602213854, f(x,y)=0.0005879751841424852 Iter 7000: x=3.008879286912175, y=0.46648512602213854, f(x,y)=0.0005879751841424852 Iter 8000: x=3.008879286912175, y=0.46648512602213854, f(x,y)=0.0005879751841424852 Iter 9000: x=3.008879286912175, y=0.46648512602213854, f(x,y)=0.0005879751841424852 Minimum found at x=3.008879286912175, y=0.46648512602213854, f(x,y)=0.0005879751841424852 ``` 可以看到,随机梯度下降法成功地优化了Beale函数,并找到了其最小值。

相关推荐

最新推荐

recommend-type

python使用梯度下降和牛顿法寻找Rosenbrock函数最小值实例

在梯度下降法中,使用了contourf和contour函数来展示函数的轮廓,并用plot函数描绘了搜索路径。牛顿法则类似,只是迭代次数更少。 总结来说,这个实例深入浅出地演示了如何用Python的梯度下降和牛顿法解决优化问题...
recommend-type

Python编程实现线性回归和批量梯度下降法代码实例

2. **梯度下降法**:梯度下降是一种优化算法,用于找到函数的局部最小值。在机器学习中,它常用于拟合模型参数,如线性回归中的θ。批量梯度下降法(Batch Gradient Descent)是其中一种变体,它在每次迭代时使用...
recommend-type

基于Python共轭梯度法与最速下降法之间的对比

在优化领域,共轭梯度法(Conjugate Gradient Method)和最速下降法(Steepest Descent Method)是两种广泛使用的迭代方法,尤其在解决大型线性系统和无约束优化问题时。这两种方法都是解决二次规划问题的有效工具,...
recommend-type

python 寻找优化使成本函数最小的最优解的方法

在实现这些算法时,Python提供了许多强大的库,如`scipy.optimize`模块,它包含了多种优化算法,如梯度下降法、Nelder-Mead法等。此外,`numpy`和`pandas`库可以帮助我们处理数据,`random`库则用于生成随机数。 总...
recommend-type

服务器虚拟化部署方案.doc

服务器、电脑、
recommend-type

VMP技术解析:Handle块优化与壳模板初始化

"这篇学习笔记主要探讨了VMP(Virtual Machine Protect,虚拟机保护)技术在Handle块优化和壳模板初始化方面的应用。作者参考了看雪论坛上的多个资源,包括关于VMP还原、汇编指令的OpCode快速入门以及X86指令编码内幕的相关文章,深入理解VMP的工作原理和技巧。" 在VMP技术中,Handle块是虚拟机执行的关键部分,它包含了用于执行被保护程序的指令序列。在本篇笔记中,作者详细介绍了Handle块的优化过程,包括如何删除不使用的代码段以及如何通过指令变形和等价替换来提高壳模板的安全性。例如,常见的指令优化可能将`jmp`指令替换为`push+retn`或者`lea+jmp`,或者将`lodsbyteptrds:[esi]`优化为`moval,[esi]+addesi,1`等,这些变换旨在混淆原始代码,增加反逆向工程的难度。 在壳模板初始化阶段,作者提到了1.10和1.21两个版本的区别,其中1.21版本增加了`Encodingofap-code`保护,增强了加密效果。在未加密时,代码可能呈现出特定的模式,而加密后,这些模式会被混淆,使分析更加困难。 笔记中还提到,VMP会使用一个名为`ESIResults`的数组来标记Handle块中的指令是否被使用,值为0表示未使用,1表示使用。这为删除不必要的代码提供了依据。此外,通过循环遍历特定的Handle块,并依据某种规律(如`v227&0xFFFFFF00==0xFACE0000`)进行匹配,可以找到需要处理的指令,如`push0xFACE0002`和`movedi,0xFACE0003`,然后将其替换为安全的重定位值或虚拟机上下文。 在结构体使用方面,笔记指出壳模板和用户代码都会通过`Vmp_AllDisassembly`函数进行解析,而且0x8和0x10字段通常都指向相同的结构体。作者还提到了根据`pNtHeader_OptionalHeader.Magic`筛选`ESI_Matching_Array`数组的步骤,这可能是为了进一步确定虚拟机上下文的设置。 这篇笔记深入解析了VMP技术在代码保护中的应用,涉及汇编指令的优化、Handle块的处理以及壳模板的初始化,对于理解反逆向工程技术以及软件保护策略有着重要的参考价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

python中字典转换成json

在Python中,你可以使用`json`模块将字典转换为JSON格式的字符串。下面是一个简单的示例: ```python import json # 假设我们有一个字典 dict_data = { "name": "John", "age": 30, "city": "New York" } # 使用json.dumps()函数将字典转换为JSON json_string = json.dumps(dict_data) print(json_string) # 输出:{"name": "John", "age": 30, "city": "New York"}
recommend-type

C++ Primer 第四版更新:现代编程风格与标准库

"Cpp Primer第四版中文版(电子版)1" 本书《Cpp Primer》第四版是一本深入浅出介绍C++编程语言的教程,旨在帮助初学者和有经验的程序员掌握现代C++编程技巧。作者在这一版中进行了重大更新,以适应C++语言的发展趋势,特别是强调使用标准库来提高编程效率。书中不再过于关注底层编程技术,而是将重点放在了标准库的运用上。 第四版的主要改动包括: 1. 内容重组:为了反映现代C++编程的最佳实践,书中对语言主题的顺序进行了调整,使得学习路径更加顺畅。 2. 添加辅助学习工具:每章增设了“小结”和“术语”部分,帮助读者回顾和巩固关键概念。此外,重要术语以黑体突出,已熟悉的术语以楷体呈现,以便读者识别。 3. 特殊标注:用特定版式标注关键信息,提醒读者注意语言特性,避免常见错误,强调良好编程习惯,同时提供通用的使用技巧。 4. 前后交叉引用:增加引用以帮助读者理解概念之间的联系。 5. 额外讨论和解释:针对复杂概念和初学者常遇到的问题,进行深入解析。 6. 大量示例:提供丰富的代码示例,所有源代码都可以在线获取,便于读者实践和学习。 本书保留了前几版的核心特色,即以实例教学,通过解释和展示语言特性来帮助读者掌握C++。作者的目标是创作一本清晰、全面、准确的教程,让读者在编写程序的过程中学习C++,同时也展示了如何有效地利用这门语言。 《Cpp Primer》第四版不仅适合C++初学者,也适合想要更新C++知识的老手,它全面覆盖了C++语言的各个方面,包括基础语法、类、模板、STL(Standard Template Library)等,同时引入了现代C++的特性,如智能指针、RAII(Resource Acquisition Is Initialization)、lambda表达式等,使读者能够跟上C++语言的发展步伐,提升编程技能。