yolo如何降低loss_如何理解YOLO:YOLO详解

时间: 2023-12-30 08:03:39 浏览: 36
YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,它可以在一张图像中同时检测出多个物体,并给出它们的位置和类别。 对于YOLO如何降低loss的问题,YOLO的loss函数主要包括两部分:定位误差(Localization Loss)和置信度误差(Confidence Loss)。 定位误差是指检测框与真实框之间的误差,YOLO使用均方差误差(MSE)来计算定位误差。而置信度误差是指检测框与真实框之间的IOU(Intersection over Union)的误差,也就是说,如果检测框与真实框之间的IOU越小,置信度误差就越大,反之亦然。 为了降低loss,YOLO采用了一些技巧,例如:使用全局平均池化(Global Average Pooling)来代替全连接层,减少模型参数;使用多尺度训练(Multi-Scale Training),对不同的尺度进行训练,让模型更加鲁棒;使用Anchor Boxes,对每个物体选择几个不同大小的先验框,使得模型对不同大小的物体有更好的适应性等。 理解YOLO,需要了解YOLO的基本原理和模型结构,以及它的优缺点。YOLO采用了单个神经网络来直接预测每个物体的类别和位置,因此速度快,但是准确率相对较低。与之相比,传统的目标检测算法(如RCNN,Fast RCNN,Faster RCNN)速度较慢,但是准确率较高。因此,在实际应用中,需要根据具体的场景来选择适合的目标检测算法。
相关问题

yolo的Loss函数

YOLO系列算法中的损失函数是用来指导模型的学习方向,并帮助模型准确地预测目标物体的位置和类别。在YOLOv3中,损失函数的设计与YOLOv2有所不同。YOLOv3的损函数使用了多个独立的逻辑回归损失来替代了YOLOv2中的softmax损失,并且去掉了对Anchor在前12800次迭代中进行训练的限制。 具体来说,YOLOv3的损失函数可以分为四个部分:边界框位置损失、边界框置信度损失、类别损失和总损失。边界框位置损失衡量了模型对目标物体位置的预测准确性,边界框置信度损失衡量了模型对目标物体存在性的预测准确性,类别损失衡量了模型对目标物体类别的预测准确性。总损失是这三个部分的加权和,用来指导模型的整体学习过程。 边界框位置损失使用平方差(L2损失)来计算预测框和真实框之间的差异。边界框置信度损失使用逻辑回归损失(二元交叉熵损失)来计算预测框是否包含目标物体的置信度。类别损失使用逻辑回归损失来计算模型对目标类别的预测与真实类别之间的差异。 总损失是边界框位置损失、边界框置信度损失和类别损失的加权和,其中权重是根据实际情况进行调整的。通过最小化总损失,模型可以逐渐提高对目标物体的检测和识别能力,从而提高整体的性能。 值得一提的是,对于YOLOv3的实现,可以使用不同的深度学习框架,例如PaddleDetection等,这些框架提供了对YOLOv3损失函数的实现代码,方便开发者进行使用和调试。 总结起来,YOLOv3的损失函数是由边界框位置损失、边界框置信度损失和类别损失组成的,通过最小化总损失来指导模型的学习过程,并提高对目标物体的检测和识别能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [【AlexeyAB DarkNet框架解析】九,YOLOV3损失函数代码详解(yolo_layer.c)](https://download.csdn.net/download/weixin_38641561/14884917)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [YOLO系列算法(v3v4)损失函数详解](https://blog.csdn.net/qq_27311165/article/details/107008610)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

yolov5 loss.py 代码详解

yolov5 loss.py 代码详解 yolov5 loss.py 是 YOLOv5 模型中的一个关键文件,主要负责计算模型的损失函数。下面是该文件的代码详解: 1. 导入必要的库 ```python import torch import torch.nn.functional as F from torch import nn ``` 2. 定义损失函数类 ```python class YOLOv5Loss(nn.Module): def __init__(self, anchors, strides, iou_threshold, num_classes, img_size): super(YOLOv5Loss, self).__init__() self.anchors = anchors self.strides = strides self.iou_threshold = iou_threshold self.num_classes = num_classes self.img_size = img_size ``` 该类继承自 nn.Module,包含了一些必要的参数,如 anchors,strides,iou_threshold,num_classes 和 img_size。 3. 定义计算损失函数的方法 ```python def forward(self, x, targets=None): bs, _, ny, nx = x.shape # batch size, channels, grid size na = self.anchors.shape[] # number of anchors stride = self.img_size / max(ny, nx) # compute stride yolo_out, grid = [], [] for i in range(3): yolo_out.append(x[i].view(bs, na, self.num_classes + 5, ny, nx).permute(, 1, 3, 4, 2).contiguous()) grid.append(torch.meshgrid(torch.arange(ny), torch.arange(nx))) ny, nx = ny // 2, nx // 2 loss, nGT, nCorrect, mask = , , , torch.zeros(bs, na, ny, nx) for i in range(3): y, g = yolo_out[i], grid[i] y[..., :2] = (y[..., :2].sigmoid() + g) * stride # xy y[..., 2:4] = y[..., 2:4].exp() * self.anchors[i].to(x.device) # wh y[..., :4] *= mask.unsqueeze(-1).to(x.device) y[..., 4:] = y[..., 4:].sigmoid() if targets is not None: na_t, _, _, _, _ = targets.shape t = targets[..., 2:6] * stride gxy = g.unsqueeze().unsqueeze(-1).to(x.device) gi, gj = gxy[..., ], gxy[..., 1] b = t[..., :4] iou = box_iou(b, y[..., :4]) # iou iou_max, _ = iou.max(2) # Match targets to anchors a = torch.arange(na_t).view(-1, 1).repeat(1, na) t = targets[a, iou_max >= self.iou_threshold] # select targets # Compute losses if len(t): # xy loss xy = y[..., :2] - gxy xy_loss = (torch.abs(xy) - .5).pow(2) * mask.unsqueeze(-1).to(x.device) # wh loss wh = torch.log(y[..., 2:4] / self.anchors[i].to(x.device) + 1e-16) wh_loss = F.huber_loss(wh, t[..., 2:4], reduction='none') * mask.unsqueeze(-1).to(x.device) # class loss tcls = t[..., ].long() tcls_onehot = torch.zeros_like(y[..., 5:]) tcls_onehot[torch.arange(len(t)), tcls] = 1 cls_loss = F.binary_cross_entropy(y[..., 5:], tcls_onehot, reduction='none') * mask.unsqueeze(-1).to(x.device) # objectness loss obj_loss = F.binary_cross_entropy(y[..., 4:5], iou_max.unsqueeze(-1), reduction='none') * mask.to(x.device) # total loss loss += (xy_loss + wh_loss + cls_loss + obj_loss).sum() nGT += len(t) nCorrect += (iou_max >= self.iou_threshold).sum().item() mask = torch.zeros(bs, na, ny, nx) if targets is not None: t = targets[..., 2:6] * stride gi, gj = g[..., ], g[..., 1] a = targets[..., 1].long() mask[torch.arange(bs), a, gj, gi] = 1 return loss, nGT, nCorrect ``` 该方法接受输入 x 和 targets,其中 x 是模型的输出,targets 是真实标签。该方法首先根据输入 x 的形状计算出 batch size,channels,grid size 和 number of anchors 等参数,然后根据这些参数计算出 stride 和 grid。接着,该方法将输入 x 分成三个部分,每个部分都包含了 na 个 anchors 和 self.num_classes + 5 个通道。然后,该方法将每个部分的输出转换成合适的形状,并计算出每个 anchor 的中心点坐标和宽高。接着,该方法根据 targets 计算出损失函数,包括 xy loss,wh loss,class loss 和 objectness loss。最后,该方法返回损失函数的值,以及 nGT 和 nCorrect。 4. 定义计算 box iou 的方法 ```python def box_iou(box1, box2): """ Returns the IoU of two bounding boxes """ b1_x1, b1_y1, b1_x2, b1_y2 = box1[..., ], box1[..., 1], box1[..., 2], box1[..., 3] b2_x1, b2_y1, b2_x2, b2_y2 = box2[..., ], box2[..., 1], box2[..., 2], box2[..., 3] inter_rect_x1 = torch.max(b1_x1, b2_x1) inter_rect_y1 = torch.max(b1_y1, b2_y1) inter_rect_x2 = torch.min(b1_x2, b2_x2) inter_rect_y2 = torch.min(b1_y2, b2_y2) inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=) * torch.clamp(inter_rect_y2 - inter_rect_y1 + 1, min=) b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1) b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1) iou = inter_area / (b1_area + b2_area - inter_area + 1e-16) return iou ``` 该方法接受两个参数 box1 和 box2,分别表示两个 bounding box 的坐标。该方法首先计算出两个 bounding box 的交集和并集,然后计算出它们的 IoU。 以上就是 yolov5 loss.py 代码的详解。

相关推荐

最新推荐

recommend-type

chromedriver-linux64-V124.0.6367.91 稳定版

chromedriver-linux64-V124.0.6367.91稳定版
recommend-type

基于yolov7 加入 depth回归

在官方的基础上改了检测头、导出onnx(适配tensorrt pro 项目)、测试demo等代码。 能够使用清华V2X数据集进行训练和测试。 https://www.bilibili.com/video/BV1Wd4y1G78M/?vd_source=0223c707743ff3013adaeff54aee3506 数据集来源:https://thudair.baai.ac.cn/index 基于Yolov7 tiny,加入了距离回归 模型没收敛完,随便试了下,所以预测有抖动 使用TRT加速,在AGX Xavier上推理大约4ms V2X使用tools/convertlabel2yolo.ipynb 进行数据集转换
recommend-type

基于STM32F101单片机设计Bluetooth Sentinel 主板硬件(原理图+PCB)工程文件.zip

基于STM32F101单片机设计Bluetooth Sentinel 主板硬件(原理图+PCB)工程文件,仅供学习设计参考。
recommend-type

【前端热门框架【vue框架】】——条件渲染和列表渲染的学习的秒杀方式 (2).txt

【前端热门框架【vue框架】】——条件渲染和列表渲染的学习的秒杀方式 (2)
recommend-type

liba2ps1-4.14-bp155.4.9.aarch64.rpm

liba2ps1-4.14-bp155.4.9.aarch64
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:快速连接Redis服务器指南

![Redis验证与连接:快速连接Redis服务器指南](https://img-blog.csdnimg.cn/20200905155530592.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNTg5NTEw,size_16,color_FFFFFF,t_70) # 1. Redis验证与连接概述 Redis是一个开源的、内存中的数据结构存储系统,它使用键值对来存储数据。为了确保数据的安全和完整性,Redis提供了多
recommend-type

gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app 报错 ModuleNotFoundError: No module named 'geventwebsocket' ]

这个报错是因为在你的环境中没有安装 `geventwebsocket` 模块,可以使用下面的命令来安装: ``` pip install gevent-websocket ``` 安装完成后再次运行 `gunicorn -k geventwebsocket.gunicorn.workers.GeventWebSocketWorker app:app` 就不会出现这个报错了。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。