self.vars = nn.ParameterList() ## 包含了所有需要被优化的tensor self.vars_bn = nn.ParameterList()
时间: 2024-06-03 09:09:51 浏览: 112
这段代码是在PyTorch中创建一个空的参数列表。ParameterList是PyTorch中的一个类,它可以让我们像列表一样存储模型的参数,便于管理和修改。在这个例子中,self.vars指向一个空的ParameterList对象。我们可以在模型中通过向self.vars添加参数来动态地构建模型。
相关问题
基于300条数据用CNN多分类预测时,训练精度特别差,代码如下class Model(Module): def __init__(self): super(Model, self).__init__() self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1) self.bn1_1 = nn.BatchNorm2d(64) self.relu1_1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4) self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1) self.bn2_1 = nn.BatchNorm2d(128) self.relu2_1 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1) self.bn3_1 = nn.BatchNorm2d(256) self.relu3_1 = nn.ReLU() self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3)) self.bn4_1 = nn.BatchNorm2d(512) self.relu4_1 = nn.ReLU() self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn4_2 = nn.BatchNorm2d(512) self.relu4_2 = nn.ReLU() self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_1 = nn.BatchNorm2d(512) self.relu5_1 = nn.ReLU() self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3)) self.bn5_2 = nn.BatchNorm2d(512) self.relu5_2 = nn.ReLU() self.pool5 = nn.AdaptiveAvgPool2d(5) self.dropout1 = nn.Dropout(p=0.3) self.fc1=nn.Linear(512*5*5,512) self.relu6=nn.ReLU() self.dropout2 = nn.Dropout(p=0.2) self.fc2=nn.Linear(512,141) ,具体如何修改代码
训练精度差可能是由于数据集太小,或者模型的训练过程不够充分。可以尝试以下几个方法:
1. 增加数据集:可以通过数据增强的方法来扩充数据集,比如随机裁剪、翻转、旋转等等。
2. 调整超参数:可以尝试调整学习率、优化器、dropout等超参数来提高模型的性能。
3. 调整网络结构:可以尝试增加卷积层、全连接层,或者使用更深的网络结构来提高模型的性能。
以下是代码的修改建议:
1. 增加数据增强:可以使用 torchvision.transforms 对图像进行随机裁剪、翻转等操作,来扩充数据集。
2. 调整学习率和优化器:可以尝试使用较小的学习率,并选择合适的优化器,比如 Adam。
3. 增加全连接层:可以在模型中增加一个全连接层来提高模型性能。
4. 增加正则化:可以使用 L2 正则化来防止过拟合。
修改后的代码如下:
```
import torch.nn.functional as F
import torchvision.transforms as transforms
class Model(Module):
def __init__(self):
super(Model, self).__init__()
self.conv1_1 = nn.Conv2d(in_channels=3,out_channels=64,kernel_size=(3,3),padding=1)
self.bn1_1 = nn.BatchNorm2d(64)
self.relu1_1 = nn.ReLU()
self.pool1 = nn.MaxPool2d(kernel_size=4, stride=4)
self.conv2_1 = nn.Conv2d(in_channels=64,out_channels=128,kernel_size=(3,3),padding=1)
self.bn2_1 = nn.BatchNorm2d(128)
self.relu2_1 = nn.ReLU()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv3_1 = nn.Conv2d(in_channels=128,out_channels=256,kernel_size=(3,3),padding=1)
self.bn3_1 = nn.BatchNorm2d(256)
self.relu3_1 = nn.ReLU()
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv4_1 = nn.Conv2d(in_channels=256,out_channels=512,kernel_size=(3,3))
self.bn4_1 = nn.BatchNorm2d(512)
self.relu4_1 = nn.ReLU()
self.conv4_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3))
self.bn4_2 = nn.BatchNorm2d(512)
self.relu4_2 = nn.ReLU()
self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv5_1 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3))
self.bn5_1 = nn.BatchNorm2d(512)
self.relu5_1 = nn.ReLU()
self.conv5_2 = nn.Conv2d(in_channels=512,out_channels=512,kernel_size=(3,3))
self.bn5_2 = nn.BatchNorm2d(512)
self.relu5_2 = nn.ReLU()
self.pool5 = nn.AdaptiveAvgPool2d(5)
self.dropout1 = nn.Dropout(p=0.3)
self.fc1=nn.Linear(512*5*5, 1024)
self.relu6=nn.ReLU()
self.dropout2 = nn.Dropout(p=0.2)
self.fc2=nn.Linear(1024, 141)
# 数据增强
self.transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
def forward(self, x):
x = self.conv1_1(x)
x = self.bn1_1(x)
x = self.relu1_1(x)
x = self.pool1(x)
x = self.conv2_1(x)
x = self.bn2_1(x)
x = self.relu2_1(x)
x = self.pool2(x)
x = self.conv3_1(x)
x = self.bn3_1(x)
x = self.relu3_1(x)
x = self.pool3(x)
x = self.conv4_1(x)
x = self.bn4_1(x)
x = self.relu4_1(x)
x = self.conv4_2(x)
x = self.bn4_2(x)
x = self.relu4_2(x)
x = self.pool4(x)
x = self.conv5_1(x)
x = self.bn5_1(x)
x = self.relu5_1(x)
x = self.conv5_2(x)
x = self.bn5_2(x)
x = self.relu5_2(x)
x = self.pool5(x)
x = x.view(-1, 512*5*5)
x = self.dropout1(x)
x = self.fc1(x)
x = self.relu6(x)
x = self.dropout2(x)
x = self.fc2(x)
return x
```
在训练时,可以使用如下代码来进行数据增强:
```
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=model.transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128,
shuffle=True, num_workers=2)
```
class ACmix(nn.Module): def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1): super(ACmix, self).__init__() self.in_planes = in_planes self.out_planes = out_planes self.head = head self.kernel_att = kernel_att self.kernel_conv = kernel_conv self.stride = stride self.dilation = dilation self.rate1 = torch.nn.Parameter(torch.Tensor(1)) self.rate2 = torch.nn.Parameter(torch.Tensor(1)) self.head_dim = self.out_planes // self.head self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1) self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1) self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2 self.pad_att = torch.nn.ReflectionPad2d(self.padding_att) self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride) self.softmax = torch.nn.Softmax(dim=1) self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False) self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes, kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1, stride=stride) self.reset_parameters()逐行解释代码
这段代码是定义了一个名为ACmix的类,继承自PyTorch中的nn.Module。它包含了一些卷积、全连接、非线性激活函数等层,用于实现图像处理任务中的注意力机制和特征融合。
具体来说,逐行解释代码如下:
```
class ACmix(nn.Module):
def __init__(self, in_planes, out_planes, kernel_att=7, head=4, kernel_conv=3, stride=1, dilation=1):
super(ACmix, self).__init__()
```
定义ACmix类,其中包含了初始化函数__init__()。其中in_planes表示输入特征图的通道数,out_planes表示输出特征图的通道数,kernel_att表示注意力机制的卷积核大小,head表示注意力机制的头数,kernel_conv表示特征融合的卷积核大小,stride表示卷积的步长,dilation表示卷积的膨胀率。
```
self.in_planes = in_planes
self.out_planes = out_planes
self.head = head
self.kernel_att = kernel_att
self.kernel_conv = kernel_conv
self.stride = stride
self.dilation = dilation
self.rate1 = torch.nn.Parameter(torch.Tensor(1))
self.rate2 = torch.nn.Parameter(torch.Tensor(1))
self.head_dim = self.out_planes // self.head
```
将输入的参数保存到类的成员变量中,其中rate1和rate2是需要学习的参数,用于调整注意力机制中的权重。
```
self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
```
定义三个卷积层,其中conv1和conv2用于计算注意力机制,conv3用于特征融合。
```
self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)
```
定义一个卷积层,用于将注意力机制中的特征图转换为头数的通道数。
```
self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2
self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)
self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)
self.softmax = torch.nn.Softmax(dim=1)
```
定义一些辅助层,其中padding_att表示注意力机制的填充大小,pad_att表示进行反射填充的层,unfold表示对特征图进行展开的层,softmax表示对展开后的特征图进行softmax操作的层。
```
self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)
self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,
kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,
stride=stride)
```
定义特征融合的卷积层和深度可分离卷积层,其中fc层用于将展开后的特征图进行特征融合,dep_conv层用于将融合后的特征图进行输出。
```
self.reset_parameters()
```
初始化模型参数。
阅读全文