self.C = np.block([ [np.identity(3), np.zeros((3, 2))] ]) self.CA = (10+1) *[self.C]
时间: 2024-06-07 22:09:27 浏览: 127
这段代码定义了两个变量,分别是 self.C 和 self.CA。
self.C 使用 numpy 库中的 block 函数创建一个 3x5 的矩阵,其中左半部分是一个 3x3 的单位矩阵(对角线上的元素为 1,其余元素为 0),右半部分是一个 3x2 的零矩阵。
self.CA 则是一个列表,包含了 11 个元素,每个元素都是 self.C。其中 10 是一个常数,加 1 是为了让列表中共有 11 个元素。可以理解为将 self.C 复制了 11 次放入列表中。
这段代码可能是用于构建一个大型矩阵的一部分,但具体应用需要根据上下文来判断。
相关问题
解释一段python代码 class KalmanFilter(object): def init(self, dim_x, dim_z, dim_u=0): if dim_x < 1: raise ValueError('dim_x must be 1 or greater') if dim_z < 1: raise ValueError('dim_z must be 1 or greater') if dim_u < 0: raise ValueError('dim_u must be 0 or greater') self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = None # control transition matrix self.F = eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self._alpha_sq = 1. # fading memory control self.M = np.zeros((dim_z, dim_z)) # process-measurement cross correlation self.z = np.array([[None]*self.dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = np.zeros((dim_x, dim_z)) # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self._I = np.eye(dim_x) # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy() # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None self.inv = np.linalg.inv
这段Python代码是KalmanFilter类的初始化方法。在这个方法中,首先会检查dim_x、dim_z和dim_u是否符合要求,如果不符合就会抛出ValueError异常。然后会根据参数的值初始化KalmanFilter对象的各个属性,包括状态量的维度dim_x、观测量的维度dim_z、控制量的维度dim_u。初始化时,状态量x被初始化为一个dim_x行1列的零向量,不确定性协方差P被初始化为dim_x阶单位矩阵,过程不确定性Q也被初始化为dim_x阶单位矩阵。控制转移矩阵B、状态转移矩阵F、测量函数H、状态不确定性R、过程-测量交叉相关M、增长记忆控制参数_alpha_sq、测量残差z、卡尔曼增益K、残差y、系统不确定性S和其逆矩阵SI等都被初始化为相应的大小的零矩阵或数组。这个类还包含一个求逆矩阵的方法inv。
class RNN: def init(self, input_size, hidden_size, output_size): self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化参数 self.Wxh = np.random.randn(hidden_size, input_size) * 0.01 # 输入层到隐藏层的权重矩阵 self.Whh = np.random.randn(hidden_size, hidden_size) * 0.01 # 隐藏层到隐藏层的权重矩阵 self.Why = np.random.randn(output_size, hidden_size) * 0.01 # 隐藏层到输出层的权重矩阵 self.bh = np.zeros((hidden_size, 1)) # 隐藏层偏置 self.by = np.zeros((output_size, 1)) # 输出层偏置 # 初始化隐藏状态 self.h = np.zeros((hidden_size, 1)) def forward(self, x): # 更新隐藏状态 self.h = np.tanh(np.dot(self.Wxh, x) + np.dot(self.Whh, self.h) + self.bh) # 计算输出 y = np.dot(self.Why, self.h) + self.by # 返回输出和隐藏状态 return y, self.h def backward(self, x, y, target, learning_rate): # 计算输出误差 dy = y - target # 计算隐藏状态误差 dh = np.dot(self.Why.T, dy) * (1 - self.h ** 2) # 计算权重和偏置的梯度 dWhy = np.dot(dy, self.h.T) dby = np.sum(dy, axis=1, keepdims=True) dWxh = np.dot(dh, x.T) dWhh = np.dot(dh, self.h.T) dbh = np.sum(dh, axis=1, keepdims=True) # 更新权重和偏置 self.Why -= learning_rate * dWhy self.by -= learning_rate * dby self.Wxh -= learning_rate * dWxh self.Whh -= learning_rate * dWhh self.bh -= learning_rate * dbh 帮写一下用online_shopping_10_cats数据集训练以上模型的代码和步骤
好的,以下是使用online_shopping_10_cats数据集训练以上模型的代码和步骤:
1. 数据预处理
首先,需要对数据集进行预处理,将每个商品评论转换为数字序列,并将其填充到相同的长度,以便于输入到模型中。可以使用Python中的keras.preprocessing.text.Tokenizer()类来实现这一步骤。代码如下:
```
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
# 读取数据集文件
with open('reviews.txt', 'r', encoding='utf8') as f:
reviews = f.readlines()
# 将每个评论转换为数字序列
tokenizer = Tokenizer()
tokenizer.fit_on_texts(reviews)
sequences = tokenizer.texts_to_sequences(reviews)
# 将序列填充到相同的长度
max_len = 100 # 设定最大长度为100
sequences = pad_sequences(sequences, maxlen=max_len, padding='post')
```
2. 划分训练集和测试集
将数据集划分为训练集和测试集,以便于在训练过程中进行模型评估。可以使用sklearn.model_selection中的train_test_split()函数来实现这一步骤。代码如下:
```
from sklearn.model_selection import train_test_split
# 读取标签文件
with open('labels.txt', 'r', encoding='utf8') as f:
labels = f.readlines()
# 划分训练集和测试集
x_train, x_test, y_train, y_test = train_test_split(sequences, labels, test_size=0.2, random_state=42)
```
3. 构建和训练模型
使用以上给出的RNN模型,构建并训练模型。需要注意的是,模型的输出需要经过softmax激活函数,以保证输出结果是概率分布。代码如下:
```
import numpy as np
# 定义模型参数
input_size = len(tokenizer.word_index) + 1
hidden_size = 100
output_size = 10
learning_rate = 0.01
epochs = 10
batch_size = 128
# 初始化模型
model = RNN(input_size, hidden_size, output_size)
# 训练模型
for epoch in range(epochs):
print('Epoch', epoch+1)
for i in range(0, len(x_train), batch_size):
x_batch = x_train[i:i+batch_size]
y_batch = y_train[i:i+batch_size]
# 将标签转换为one-hot编码
y_batch = np.eye(output_size)[y_batch]
# 前向传播
y_pred, h = model.forward(x_batch.T)
# 计算损失函数
loss = -np.sum(y_batch*np.log(y_pred)) / len(x_batch)
# 反向传播
model.backward(x_batch.T, y_pred, y_batch, learning_rate)
# 在测试集上进行模型评估
y_test_pred, _ = model.forward(x_test.T)
y_test_pred = np.argmax(y_test_pred, axis=0)
accuracy = np.mean(np.equal(y_test_pred, y_test))
print('Test accuracy:', accuracy)
```
4. 模型评估
在训练过程中,可以在每个epoch结束后,在测试集上进行模型评估,以评估模型的性能。代码如下:
```
# 在测试集上进行模型评估
y_test_pred, _ = model.forward(x_test.T)
y_test_pred = np.argmax(y_test_pred, axis=0)
accuracy = np.mean(np.equal(y_test_pred, y_test))
print('Test accuracy:', accuracy)
```
以上就是使用online_shopping_10_cats数据集训练以上模型的完整代码和步骤。
阅读全文