reg=stats.OLS.from_formula('price~sqft_living+bedrooms+age',housing).fit()什么意思
时间: 2024-03-04 21:53:14 浏览: 80
这段代码使用了Python中的statsmodels库的OLS模型,通过最小二乘法来拟合一个线性回归模型。其中,'price~sqft_living+bedrooms+age'是线性回归模型的公式,表示因变量为price,自变量分别为sqft_living、bedrooms和age。housing是数据集。拟合后的结果存储在reg变量中。
相关问题
reg=stats.OLS.from_formula('price~sqft_living+bedrooms+age',train).fit()什么意思
这段代码使用了Python中的statsmodels库的OLS模型,通过最小二乘法来拟合一个线性回归模型。其中,'price~sqft_living+bedrooms+age'是线性回归模型的公式,表示因变量为price,自变量分别为sqft_living、bedrooms和age。train是数据集,通常是用于机器学习模型的训练集。拟合后的结果存储在reg变量中。
reg=stats.OLS.from_formula('np.log(price)~np.log(sqft_living )',housing).fit()
`stats.OLS.from_formula()`是一个用于根据公式字符串进行线性回归分析的函数,可以方便地指定回归模型中的变量和函数,以及进行变量的转换和交互。
在Python中,通常使用`statsmodels`库进行回归分析。在使用`statsmodels`库时,可以使用该函数根据公式字符串进行线性回归分析。例如,下面的代码使用`statsmodels`库对房屋销售价格与居住面积进行线性回归分析:
```python
import statsmodels.formula.api as smf
import pandas as pd
# 读取数据
housing = pd.read_csv('housing.csv')
# 进行线性回归分析
reg = smf.ols('np.log(price) ~ np.log(sqft_living)', housing).fit()
# 输出回归结果摘要
print(reg.summary())
```
在上面的代码中,`smf.ols()`函数根据公式字符串`'np.log(price) ~ np.log(sqft_living)'`进行线性回归分析,其中`np.log(price)`表示目标变量,`np.log(sqft_living)`表示自变量。这里使用了NumPy中的`np.log()`函数对变量进行对数转换。最后使用`fit()`函数对模型进行拟合,并输出回归结果摘要。
阅读全文