c++实现设计一个算法,计算由n个整数组成的序列的最长单调递增子序列的长度。 【输入形式】 两行。 第1行为一个正整数n,表示整数的个数,n≤1000。 第2行为n个整数。 【输出形式】 一个整数,为最长单调递增子序列的长度。

时间: 2024-03-15 12:46:19 浏览: 30
好的,这是一个经典的动态规划问题。下面是C++实现: ```c++ #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<int> nums(n); for (int i = 0; i < n; i++) { cin >> nums[i]; } vector<int> dp(n, 1); // dp[i]表示以nums[i]为结尾的最长单调递增子序列的长度 int res = 1; // 最终结果 for (int i = 1; i < n; i++) { for (int j = 0; j < i; j++) { if (nums[i] > nums[j]) { dp[i] = max(dp[i], dp[j] + 1); res = max(res, dp[i]); } } } cout << res << endl; return 0; } ``` 时间复杂度为 $O(n^2)$,空间复杂度为 $O(n)$。如果你想了解更多关于最长单调递增子序列的算法,可以参考《算法竞赛进阶指南》中的相关章节。
相关问题

c++设计一个算法,计算由n个整数组成的序列的最长单调递增子序列的长度

可以使用动态规划算法来解决这个问题。 定义一个数组 dp,其中 dp[i] 表示以第 i 个元素为结尾的最长递增子序列的长度。 初始时,所有元素的最长递增子序列长度都为 1,即 dp[i] = 1。 然后,对于每个位置 i,我们需要找到所有在它之前的位置 j,满足 nums[j] < nums[i],并且 dp[j] + 1 大于 dp[i]。在这些位置中,选择 dp[j] + 1 最大的作为 dp[i] 的值。 最后,遍历整个 dp 数组,找到其中最大的值,即为最长单调递增子序列的长度。 以下是 C++ 代码实现: ```c++ int lengthOfLIS(vector<int>& nums) { int n = nums.size(); vector<int> dp(n, 1); int res = 1; for (int i = 1; i < n; i++) { for (int j = 0; j < i; j++) { if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1); } } res = max(res, dp[i]); } return res; } ```

用c++设计一个算法,计算由n个整数组成的序列的最长单调递增子序列的长度。

可以使用动态规划来解决这个问题。我们可以定义一个数组dp,其中dp[i]表示以第i个元素为结尾的最长单调递增子序列的长度。那么我们可以递推地计算每个dp[i]的值,具体步骤如下: 1. 初始化dp数组,将所有元素的dp值都设为1,因为每个元素本身都可以看作一个长度为1的单调递增子序列。 2. 枚举i从1到n-1,对于每个i,枚举j从0到i-1,如果第j个元素小于第i个元素,则更新dp[i]的值为dp[j]+1和dp[i]中的较大值。 3. 最后,dp数组中的最大值就是整个序列的最长单调递增子序列的长度。 下面是C++代码实现: ```c++ #include <iostream> #include <vector> using namespace std; int lengthOfLIS(vector<int>& nums) { int n = nums.size(); vector<int> dp(n, 1); for (int i = 1; i < n; i++) { for (int j = 0; j < i; j++) { if (nums[j] < nums[i]) { dp[i] = max(dp[i], dp[j] + 1); } } } int ans = 0; for (int i = 0; i < n; i++) { ans = max(ans, dp[i]); } return ans; } int main() { vector<int> nums = {10, 9, 2, 5, 3, 7, 101, 18}; cout << lengthOfLIS(nums) << endl; return 0; } ``` 输出结果为4,表示序列{2, 3, 7, 101}是最长的单调递增子序列,长度为4。

相关推荐

最新推荐

recommend-type

C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法

主要介绍了C++使用递归和非递归算法实现的二叉树叶子节点个数计算方法,涉及C++二叉树的定义、遍历、统计相关操作技巧,需要的朋友可以参考下
recommend-type

c++语言写最长公共子序列问题

用c++语言写的最长公共子序列问题,比较经典的动态规划问题。能完美运行,输入2个字符串序列之后就能得出最长公共子序列。
recommend-type

C++实现两个有序数组的合并

主要为大家详细介绍了C++实现两个有序数组的合并,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

C++通过自定义函数找出一个整数数组中第二大数的方法

主要介绍了C++通过自定义函数找出一个整数数组中第二大数的方法,涉及C++针对数组的遍历操作相关技巧,需要的朋友可以参考下
recommend-type

基于C++的农夫过河问题算法设计与实现方法

主要介绍了基于C++的农夫过河问题算法设计与实现方法,简单描述了农夫过河问题,并结合实例形式详细分析了基于C++实现农夫过河问题的相关算法实现步骤与操作技巧,需要的朋友可以参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。