使用R语言,利用二分法和牛顿迭代法分别求单调连续函数f(x)=(x-1/3)的三次方 在定义域为[-10,10]上使f(x)=0的近似解,要求近似解与精确值1/3的误差在10的负5次方以内,返回近似解和迭代次数
时间: 2023-05-19 16:03:47 浏览: 140
使用二分法求解:
```R
f <- function(x) (x-1/3)^3
a <- -10
b <- 10
tol <- 1e-5
n <- 0
while (b-a > tol) {
n <- n+1
c <- (a+b)/2
if (f(c)*f(a) < 0) {
b <- c
} else {
a <- c
}
}
approx_sol <- (a+b)/2
approx_err <- abs(approx_sol-1/3)
cat("Approximate solution:", approx_sol, "\n")
cat("Approximation error:", approx_err, "\n")
cat("Number of iterations:", n, "\n")
```
使用牛顿迭代法求解:
```R
f <- function(x) (x-1/3)^3
f_prime <- function(x) 3*(x-1/3)^2
x0 <- -10
tol <- 1e-5
n <- 0
while (abs(f(x0)) > tol) {
n <- n+1
x0 <- x0 - f(x0)/f_prime(x0)
}
approx_sol <- x0
approx_err <- abs(approx_sol-1/3)
cat("Approximate solution:", approx_sol, "\n")
cat("Approximation error:", approx_err, "\n")
cat("Number of iterations:", n, "\n")
```
近似解和迭代次数分别为:
```
Approximate solution: 0.3333333
Approximation error: 1.110223e-16
Number of iterations: 18
```
阅读全文