生成处理一维数据的RESNET代码
时间: 2023-12-02 18:04:22 浏览: 93
resnet1d:一维(1D)信号时间序列数据上的多个SOTA骨干深度神经网络(例如ResNet,ResNeXt,RegNet)的PyTorch实现
以下是一个简单的基于PyTorch的一维RESNET代码:
```python
import torch
import torch.nn as nn
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1):
super(ResBlock, self).__init__()
self.conv1 = nn.Conv1d(in_channels, out_channels, kernel_size, stride, padding)
self.bn1 = nn.BatchNorm1d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(out_channels, out_channels, kernel_size, stride, padding)
self.bn2 = nn.BatchNorm1d(out_channels)
self.stride = stride
self.downsample = nn.Sequential(
nn.Conv1d(in_channels, out_channels, 1, stride),
nn.BatchNorm1d(out_channels))
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, in_channels, out_channels, block_sizes, num_classes=1):
super(ResNet, self).__init__()
self.in_channels = in_channels
self.conv1 = nn.Conv1d(in_channels, 64, kernel_size=7, stride=2, padding=3)
self.bn1 = nn.BatchNorm1d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(out_channels, block_sizes[0])
self.layer2 = self._make_layer(out_channels * 2, block_sizes[1], stride=2)
self.layer3 = self._make_layer(out_channels * 4, block_sizes[2], stride=2)
self.layer4 = self._make_layer(out_channels * 8, block_sizes[3], stride=2)
self.avgpool = nn.AdaptiveAvgPool1d((1,))
self.fc = nn.Linear(out_channels * 8, num_classes)
def _make_layer(self, out_channels, block_size, stride=1):
layers = []
layers.append(ResBlock(self.in_channels, out_channels, stride=stride))
self.in_channels = out_channels
for i in range(1, block_size):
layers.append(ResBlock(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.maxpool(out)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avgpool(out)
out = torch.flatten(out, 1)
out = self.fc(out)
return out
```
在这个例子中,我们定义了ResBlock和ResNet两个类。ResBlock是一维RESNET的基本单元,由两个1D卷积层和批归一化层组成。ResNet由四个不同大小的ResBlock层组成,每个层有多个ResBlock单元。在ResNet的最后,我们有一个全连接层将输出映射到我们的目标类别。
阅读全文