r语言多分类决策树
时间: 2023-07-22 18:18:21 浏览: 102
在R语言中,可以使用决策树模型进行多分类任务的建模。其中,常用的决策树算法有CART、C4.5和C5.0等。
下面以CART算法为例,介绍R语言中如何使用决策树进行多分类任务的建模。
首先,需要安装并加载rpart包,该包提供了决策树相关的函数和数据集。
```R
install.packages("rpart")
library(rpart)
```
接下来,我们使用iris数据集进行演示。该数据集包含了三种不同品种的鸢尾花(setosa、versicolor和virginica),每种品种各有50个样本,共计150个样本。每个样本包含了4个特征(花萼长度、花萼宽度、花瓣长度和花瓣宽度),目标变量为品种。
```R
data(iris)
head(iris)
```
接着,我们将数据集拆分成训练集和测试集,其中训练集占总样本数的70%。
```R
set.seed(123)
train_idx <- sample(1:nrow(iris), 0.7*nrow(iris), replace=FALSE)
train_data <- iris[train_idx, ]
test_data <- iris[-train_idx, ]
```
然后,我们使用rpart函数建立决策树模型。
```R
model <- rpart(Species ~ ., data=train_data, method="class")
```
其中,Species为目标变量,.表示使用所有特征进行建模,method="class"表示进行多分类任务的建模。
最后,我们使用predict函数在测试集上进行预测,并计算模型的准确率。
```R
pred <- predict(model, test_data, type="class")
accuracy <- sum(pred == test_data$Species) / nrow(test_data)
```
完整代码如下:
```R
# 安装并加载rpart包
install.packages("rpart")
library(rpart)
# 加载数据集
data(iris)
# 拆分数据集
set.seed(123)
train_idx <- sample(1:nrow(iris), 0.7*nrow(iris), replace=FALSE)
train_data <- iris[train_idx, ]
test_data <- iris[-train_idx, ]
# 建立决策树模型
model <- rpart(Species ~ ., data=train_data, method="class")
# 在测试集上进行预测,并计算准确率
pred <- predict(model, test_data, type="class")
accuracy <- sum(pred == test_data$Species) / nrow(test_data)
```
以上就是在R语言中使用决策树进行多分类任务的方法。
阅读全文