image = cv2.imdecode(np.fromfile(i, dtype=np.uint8),cv2.IMREAD_COLOR)
时间: 2023-11-16 08:05:16 浏览: 127
这行代码是使用OpenCV库中的imdecode函数来解码一个文件,将其转换为一个图像对象。具体来说,np.fromfile函数将文件中的二进制数据读取到一个NumPy数组中,然后使用cv2.IMREAD_COLOR参数告诉OpenCV库将其解码为RGB颜色模式的图像。最终得到的结果是一个图像对象,可以用于后续的图像处理操作。
相关问题
import pickle import numpy as np import os # from scipy.misc import imread def load_CIFAR_batch(filename): with open(filename, 'rb') as f: datadict = pickle.load(f, encoding='bytes') X = datadict[b'data'] Y = datadict[b'labels'] X = X.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") Y = np.array(Y) return X, Y def load_CIFAR10(ROOT): xs = [] ys = [] for b in range(1, 2): f = os.path.join(ROOT, 'data_batch_%d' % (b,)) X, Y = load_CIFAR_batch(f) xs.append(X) ys.append(Y) Xtr = np.concatenate(xs) Ytr = np.concatenate(ys) del X, Y Xte, Yte = load_CIFAR_batch(os.path.join(ROOT, 'test_batch')) return Xtr, Ytr, Xte, Yte def get_CIFAR10_data(num_training=5000, num_validation=500, num_test=500): cifar10_dir = r'D:\daima\cifar-10-python\cifar-10-batches-py' X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir) print(X_train.shape) mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_train = X_train.transpose(0, 3, 1, 2).copy() X_val = X_val.transpose(0, 3, 1, 2).copy() X_test = X_test.transpose(0, 3, 1, 2).copy() return { 'X_train': X_train, 'y_train': y_train, 'X_val': X_val, 'y_val': y_val, 'X_test': X_test, 'y_test': y_test, } def load_models(models_dir): models = {} for model_file in os.listdir(models_dir): with open(os.path.join(models_dir, model_file), 'rb') as f: try: models[model_file] = pickle.load(f)['model'] except pickle.UnpicklingError: continue return models这是一个加载cifar10数据集的函数,如何修改使其能加载mnist数据集,不使用TensorFlow
可以使用以下代码加载MNIST数据集:
```
import gzip
import os
import pickle
import numpy as np
def load_mnist(path, kind='train'):
labels_path = os.path.join(path, '%s-labels-idx1-ubyte.gz' % kind)
images_path = os.path.join(path, '%s-images-idx3-ubyte.gz' % kind)
with gzip.open(labels_path, 'rb') as lbpath:
labels = np.frombuffer(lbpath.read(), dtype=np.uint8, offset=8)
with gzip.open(images_path, 'rb') as imgpath:
images = np.frombuffer(imgpath.read(), dtype=np.uint8, offset=16).reshape(len(labels), 784)
return images, labels
def get_mnist_data(num_training=5000, num_validation=500, num_test=500):
mnist_dir = r'D:\daima\mnist' # 修改为mnist数据集所在的目录
X_train, y_train = load_mnist(mnist_dir, kind='train')
X_test, y_test = load_mnist(mnist_dir, kind='t10k')
print(X_train.shape)
mask = range(num_training, num_training + num_validation)
X_val = X_train[mask]
y_val = y_train[mask]
mask = range(num_training)
X_train = X_train[mask]
y_train = y_train[mask]
mask = range(num_test)
X_test = X_test[mask]
y_test = y_test[mask]
X_train = X_train.astype('float32') / 255
X_val = X_val.astype('float32') / 255
X_test = X_test.astype('float32') / 255
return {
'X_train': X_train,
'y_train': y_train,
'X_val': X_val,
'y_val': y_val,
'X_test': X_test,
'y_test': y_test,
}
```
这个函数将会返回训练集、验证集和测试集的图像和标签。其中,图像是一个形如`(num_samples, 784)`的数组,标签是一个形如`(num_samples,)`的数组。
if img_path: img = cv2.imdecode(fromfile(img_path, dtype=uint8), cv2.IMREAD_COLOR)#彩色 #使用OpenCV库读取指定路径的图像文件,并解码为对应的NumPy数组格式 self.show(img, 400, oriImg) colors, lisencePlates = self.getROI(img) for m in range(len(lisencePlates)): self.show(lisencePlates[m], 40, ROIImg) letters = self.getLetters(lisencePlates[m], colors[m]) results = [] for letter in letters: feature = self.getFeature(letter) result = self.sort(feature, trainingMat, labels, 5) results.append(result) print(result) recogResult = ','.join(results) resultShow.configure(text=recogResult)
这段代码是一个 Python 类中的一个方法,用于处理车牌识别的流程。具体来说,它会读取指定路径的图像文件,解码为对应的 NumPy 数组格式,并进行一系列的处理,最终得到车牌识别的结果。
首先,代码会通过 cv2.imdecode() 函数读取指定路径的图像文件,并解码为彩色图片格式。接着,代码会调用 self.show() 方法,将读取到的图片显示在界面上。然后,代码会调用 self.getROI() 方法,对图片进行车牌的定位和提取,得到一个包含所有车牌的列表 lisencePlates。
接下来,代码会遍历 lisencePlates 中的所有车牌,依次调用 self.show() 方法将车牌显示在界面上,并调用 self.getLetters() 方法提取车牌中的字符。提取过程中,代码会使用 colors 列表记录车牌中每个字符的颜色信息。
对于每个字符,代码会调用 self.getFeature() 方法提取其特征,并调用 self.sort() 方法进行分类。分类过程中,代码会使用训练集的特征矩阵 trainingMat 和标签 labels 进行训练,并选取距离最近的 5 个样本进行分类。分类结果将被记录在 results 列表中。
最后,代码会将 results 中的分类结果拼接成一个字符串 recogResult,并将其显示在界面上。
阅读全文