用训练好的自己编写的VGG16模型,生成网络中某一层特征图可视化的代码
时间: 2024-01-21 16:17:00 浏览: 83
一个可以生成可视图的c代码
以下是用训练好的VGG16模型,生成网络中某一层特征图可视化的代码:
```python
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
# 加载VGG16模型
model = tf.keras.applications.vgg16.VGG16(include_top=False, weights='imagenet')
# 选择要可视化的层的名称和编号
layer_name = 'block3_conv3'
layer_index = 10
# 获取指定层的输出
layer_outputs = [layer.output for layer in model.layers]
activation_model = tf.keras.models.Model(inputs=model.input, outputs=layer_outputs)
activations = activation_model.predict(img)
# 取出指定层的输出
layer_activation = activations[layer_index]
plt.matshow(layer_activation[0, :, :, 3], cmap='viridis')
# 将指定层的输出进行平均,得到特征图
n_features = layer_activation.shape[-1]
size = layer_activation.shape[1]
n_cols = n_features // 8
display_grid = np.zeros((size * n_cols, 8 * size))
for col in range(n_cols):
for row in range(8):
channel_image = layer_activation[0, :, :, col * 8 + row]
channel_image -= channel_image.mean()
channel_image /= channel_image.std()
channel_image *= 64
channel_image += 128
channel_image = np.clip(channel_image, 0, 255).astype('uint8')
display_grid[col * size: (col + 1) * size,
row * size: (row + 1) * size] = channel_image
# 可视化特征图
scale = 1. / size
plt.figure(figsize=(scale * display_grid.shape[1],
scale * display_grid.shape[0]))
plt.title(layer_name)
plt.grid(False)
plt.imshow(display_grid, aspect='auto', cmap='viridis')
```
注:上述代码中,layer_name 和 layer_index 可以根据实际情况进行修改。其中,layer_name 是要可视化的层的名称,layer_index 是该层在模型中的编号。
阅读全文