采用邻接表表示法,构造无向网G;并从任意一个顶点出发,递归地深度优先遍历该图G

时间: 2024-03-16 16:47:51 浏览: 61
好的,那么让我们采用邻接表表示法来构造无向网G,并从任意一个顶点出发,递归地深度优先遍历该图G。 首先,我们需要定义一个邻接表的数据结构来表示无向图。邻接表的每个节点表示一个顶点,每个节点保存了该顶点相邻的所有顶点的信息(即边的信息)。我们可以使用链表来实现邻接表。具体的,我们可以定义一个结构体来表示每个节点,它包括两个部分:一个顶点标识符和一个指向链表头的指针。链表头节点包括了该顶点的度数和一个指向相邻顶点的指针数组。 下面是这个结构体的定义: ```c typedef struct node { int dest; // 相邻顶点的标识符 int weight; // 边的权重 struct node* next; // 指向下一个节点的指针 } Node; typedef struct graph { int num_vertices; // 顶点数目 Node** adj_lists; // 邻接表数组 } Graph; ``` 接下来,我们可以使用这个数据结构来构造一个无向网。我们可以使用一个函数来初始化邻接表,并添加边。这个函数接受一个空的邻接表和一组边,然后在邻接表中添加这些边。具体的,我们可以遍历边数组,对于每条边,我们可以在邻接表中找到对应的两个节点,然后将它们相互连接起来。 下面是这个函数的代码实现: ```c void add_edge(Graph* graph, int src, int dest, int weight) { // 将 dest 添加到 src 的邻接表中 Node* new_node = malloc(sizeof(Node)); new_node->dest = dest; new_node->weight = weight; new_node->next = graph->adj_lists[src]; graph->adj_lists[src] = new_node; // 将 src 添加到 dest 的邻接表中 new_node = malloc(sizeof(Node)); new_node->dest = src; new_node->weight = weight; new_node->next = graph->adj_lists[dest]; graph->adj_lists[dest] = new_node; } Graph* create_graph(int num_vertices, int num_edges, int edges[][3]) { // 创建一个空的邻接表 Graph* graph = malloc(sizeof(Graph)); graph->num_vertices = num_vertices; graph->adj_lists = malloc(sizeof(Node*) * num_vertices); for (int i = 0; i < num_vertices; i++) { graph->adj_lists[i] = NULL; } // 添加边 for (int i = 0; i < num_edges; i++) { int src = edges[i][0]; int dest = edges[i][1]; int weight = edges[i][2]; add_edge(graph, src, dest, weight); } return graph; } ``` 现在,我们已经构造好了一个无向网。接下来,我们可以使用递归的深度优先搜索算法来遍历这个网。具体的,我们从任意一个顶点开始,一直深入到没有未访问的邻居节点为止。为了避免重复访问节点,我们需要维护一个标记数组,记录每个节点是否已经被访问过。 下面是深度优先搜索算法的代码实现: ```c void dfs(Graph* graph, int vertex, int* visited) { visited[vertex] = 1; printf("%d ", vertex); Node* adj_list = graph->adj_lists[vertex]; while (adj_list != NULL) { int adj_vertex = adj_list->dest; if (visited[adj_vertex] == 0) { dfs(graph, adj_vertex, visited); } adj_list = adj_list->next; } } void depth_first_search(Graph* graph, int start_vertex) { int* visited = malloc(sizeof(int) * graph->num_vertices); for (int i = 0; i < graph->num_vertices; i++) { visited[i] = 0; } dfs(graph, start_vertex, visited); } ``` 现在,我们已经实现了一个完整的程序,可以用来构造无向网G,并从任意一个顶点出发,递归地深度优先遍历该网G。你可以调用 `create_graph()` 函数来构造一个网,然后调用 `depth_first_search()` 函数来遍历这个网。
阅读全文

相关推荐

一个连通图采用邻接表作为存储结构。设计一个算法,实现从顶点v出发的深度优先遍历的非递归过程。#include<iostream> #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define MAXSIZE 100 using namespace std; typedef struct ArcNode {//边结点 int data; struct ArcNode *nextarc; //链域:指向下一条边的指针 }ArcNode; typedef struct VNode {//顶点信息 int data; ArcNode *firstarc; //链域:指向第一条依附该顶点的边的指针 }VNode,AdjList[MAXSIZE]; //AdjList表示邻接表类型 typedef struct {//邻接表 AdjList vertices; int vexnum,arcnum; //图的当前顶点数和边数 }ALGraph; typedef struct {//顺序栈 int *base; //栈底指针 int *top; //栈顶指针 int stacksize; //栈可用的最大容量 }SqStack; void InitStack(SqStack &S) {//顺序栈的初始化 S.base=new int[MAXSIZE]; //动态分配一个最大容量MAXSIZE的数组空间 S.top=S.base; //top初始为base,空栈 S.stacksize=MAXSIZE; } void Push(SqStack &S,int e) {//入栈操作 if(S.top-S.base==S.stacksize) //栈满 return; *S.top=e; //元素e压入栈顶 S.top++; //栈顶指针加1 } void Pop(SqStack &S,int &e) {//出栈操作 if(S.base==S.top) //栈空 return; S.top--; //栈顶指针减1 e=*S.top; //将栈顶元素赋给e } bool StackEmpty(SqStack S) {//判空操作 if(S.base==S.top) //栈空返回true return true; return false; } bool visited[MAXSIZE]; //访问标志数组,初始为false int CreateUDG(ALGraph &G,int vexnum,int arcnum) {//采用邻接表表示法,创建无向图G G.vexnum=vexnum; //输入总顶点数 G.arcnum=arcnum; //输入总边数 if(G.vexnum>MAXSIZE) return ERROR; //超出最大顶点数则结束函数 int i,h,k; for(i=1;i<=G.vexnum;i++) //构造表头结点表 { G.vertices[i].data=i; visited[i]=false; G.vertices[i].firstarc=NULL; } ArcNode *p1,*p2; for(i=0;i<G.arcnum;i++) //输入各边,头插法构造邻接表 { cin>>h>>k; p1=new ArcNode; p1->data=k; p1->nextarc=G.vertices[h].firstarc; G.vertices[h].firstarc=p1; p2=new ArcNode; p2->data=h; p2->nextarc=G.vertices[k].firstarc; G.vertices[k].firstarc=p2; } return OK; } void DFS(ALGraph G,int v,SqStack S) {//从第v个顶点出发非递归实现深度优先遍历图G /**begin/ /**end/ } int main() { int n,m; while(cin>>n>>m) { if(n==0&&m==0) break; ALGraph G; SqStack S; CreateUDG(G,n,m); //创建无向图G int d; //从d开始遍历 cin>>d; DFS(G,d,S); //基于邻接表的深度优先遍历 } return 0; }

最新推荐

recommend-type

假设图中数据元素类型是字符型,请采用邻接矩阵或邻接表实现图的以下基本操作: (1)构造图(包括有向图、有向网、无向图、无向网); (2)根据深度优先遍历图。

深度优先遍历类似于树的先根遍历,从一个起始顶点开始,沿着一条路径尽可能深地探索,直到访问完所有顶点。在遍历过程中,通常使用一个visited[]数组来记录顶点的访问状态,初始化时所有顶点都标记为未访问(FALSE)...
recommend-type

图遍历的演示报告及源代码

总结而言,这个报告和源代码涵盖了图遍历的基础理论和实现,包括深度优先搜索和广度优先搜索,使用邻接多重表作为图的存储结构,并通过栈和队列辅助实现。通过这个课程设计,学生可以深入学习图论、数据结构和算法,...
recommend-type

数据结构——第7章 数据结构 第七章anyview系统作业答案

首先,让我们深入理解图的邻接表表示法。在邻接表中,每个顶点都有一个链表,链表中的节点代表与该顶点相连的边。这种表示方法适用于稀疏图(边的数量远小于顶点数量的平方),因为它节省了存储空间。对于图的类型...
recommend-type

图论总结 by Amber.doc

- **邻接表**:节省空间的表示法,列出每个顶点的邻接顶点。 - **弧表**:更细致地记录边的信息,适用于有向图。 - **星形表示**:在特定情况下,简化图的表示,如中心顶点与其他顶点相连。 3. **图的遍历**: ...
recommend-type

【java毕业设计】应急救援物资管理系统源码(springboot+vue+mysql+说明文档).zip

项目经过测试均可完美运行! 环境说明: 开发语言:java jdk:jdk1.8 数据库:mysql 5.7+ 数据库工具:Navicat11+ 管理工具:maven 开发工具:idea/eclipse
recommend-type

Android圆角进度条控件的设计与应用

资源摘要信息:"Android-RoundCornerProgressBar" 在Android开发领域,一个美观且实用的进度条控件对于提升用户界面的友好性和交互体验至关重要。"Android-RoundCornerProgressBar"是一个特定类型的进度条控件,它不仅提供了进度指示的常规功能,还具备了圆角视觉效果,使其更加美观且适应现代UI设计趋势。此外,该控件还可以根据需求添加图标,进一步丰富进度条的表现形式。 从技术角度出发,实现圆角进度条涉及到Android自定义控件的开发。开发者需要熟悉Android的视图绘制机制,包括但不限于自定义View类、绘制方法(如`onDraw`)、以及属性动画(Property Animation)。实现圆角效果通常会用到`Canvas`类提供的画图方法,例如`drawRoundRect`函数,来绘制具有圆角的矩形。为了添加图标,还需考虑如何在进度条内部适当地放置和绘制图标资源。 在Android Studio这一集成开发环境(IDE)中,自定义View可以通过继承`View`类或者其子类(如`ProgressBar`)来完成。开发者可以定义自己的XML布局文件来描述自定义View的属性,比如圆角的大小、颜色、进度值等。此外,还需要在Java或Kotlin代码中处理用户交互,以及进度更新的逻辑。 在Android中创建圆角进度条的步骤通常如下: 1. 创建自定义View类:继承自`View`类或`ProgressBar`类,并重写`onDraw`方法来自定义绘制逻辑。 2. 定义XML属性:在资源文件夹中定义`attrs.xml`文件,声明自定义属性,如圆角半径、进度颜色等。 3. 绘制圆角矩形:在`onDraw`方法中使用`Canvas`的`drawRoundRect`方法绘制具有圆角的进度条背景。 4. 绘制进度:利用`Paint`类设置进度条颜色和样式,并通过`drawRect`方法绘制当前进度覆盖在圆角矩形上。 5. 添加图标:根据自定义属性中的图标位置属性,在合适的时机绘制图标。 6. 通过编程方式更新进度:在Activity或Fragment中,使用自定义View的方法来编程更新进度值。 7. 实现动画:如果需要,可以通过Android的动画框架实现进度变化的动画效果。 标签中的"Android开发"表明,这些知识点和技能主要面向的是Android平台的开发人员。对于想要在Android应用中实现自定义圆角进度条的开发者来说,他们需要具备一定的Android编程基础,并熟悉相关的开发工具和库。 在"RoundCornerProgressBar-master"压缩包文件的文件名称列表中,我们可以推测这个资源包含了完整的项目代码,包括源代码、资源文件、布局文件、可能的示例代码以及必要的文档说明。开发者通过下载和解压缩这个包,可以得到一个完整的项目,从而可以直接查看代码实现细节,或是将其集成到自己的项目中。 最终,对于希望使用"Android-RoundCornerProgressBar"的开发者,关键在于理解自定义View的创建过程、圆角图形的绘制技术,以及如何在Android应用中集成和使用这些自定义控件。通过上述知识点的学习和实践,开发者能够掌握在Android应用中创建美观且功能丰富的用户界面所需的技能。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言lattice包实战】:从案例到技巧,图形制作不再难

![R语言数据包使用详细教程lattice](http://pfister.ee.duke.edu/images/Nguyen-arxiv11-fig2.jpg) # 1. R语言与lattice包概述 R语言作为统计分析领域内广泛应用的编程语言,凭借其强大的图形功能而受到数据科学家的青睐。在R语言中,lattice包是绘图系统的重要组成部分,它基于trellis图形系统设计,能够高效地创建多变量条件图。本章节将引导读者对lattice包有一个初步的了解,并概述其功能和应用范围。 ## 1.1 R语言中的图形系统 R语言提供了一系列的图形系统,基础图形系统(base graphics)是其
recommend-type

输入正整数n.打出长度为n的菱形

好的,以下是打印菱形的代码实现: ``` #include <stdio.h> #include <stdlib.h> int main() { int n, i, j; printf("请输入一个正整数n:"); scanf("%d", &n); if(n % 2 == 0) { // 如果输入的n是偶数,将其加1变成奇数 n++; } for(i = 0; i < n / 2 + 1; i++) { for(j = 0; j < n / 2 - i; j++) { printf(
recommend-type

mui框架实现带侧边栏的响应式布局

资源摘要信息:"mui实现简单布局.zip" mui是一个基于HTML5的前端框架,它采用了类似Bootstrap的语义化标签,但是专门为移动设备优化。该框架允许开发者使用Web技术快速构建高性能、可定制、跨平台的移动应用。此zip文件可能包含了一个用mui框架实现的简单布局示例,该布局具有侧边栏,能够实现首页内容的切换。 知识点一:mui框架基础 mui框架是一个轻量级的前端库,它提供了一套响应式布局的组件和丰富的API,便于开发者快速上手开发移动应用。mui遵循Web标准,使用HTML、CSS和JavaScript构建应用,它提供了一个类似于jQuery的轻量级库,方便DOM操作和事件处理。mui的核心在于其强大的样式表,通过CSS可以实现各种界面效果。 知识点二:mui的响应式布局 mui框架支持响应式布局,开发者可以通过其提供的标签和类来实现不同屏幕尺寸下的自适应效果。mui框架中的标签通常以“mui-”作为前缀,如mui-container用于创建一个宽度自适应的容器。mui中的布局类,比如mui-row和mui-col,用于创建灵活的栅格系统,方便开发者构建列布局。 知识点三:侧边栏实现 在mui框架中实现侧边栏可以通过多种方式,比如使用mui sidebar组件或者通过布局类来控制侧边栏的位置和宽度。通常,侧边栏会使用mui的绝对定位或者float浮动布局,与主内容区分开来,并通过JavaScript来控制其显示和隐藏。 知识点四:首页内容切换功能 实现首页可切换的功能,通常需要结合mui的JavaScript库来控制DOM元素的显示和隐藏。这可以通过mui提供的事件监听和动画效果来完成。开发者可能会使用mui的开关按钮或者tab标签等组件来实现这一功能。 知识点五:mui的文件结构 该压缩包文件包含的目录结构说明了mui项目的基本结构。其中,"index.html"文件是项目的入口文件,它将展示整个应用的界面。"manifest.json"文件是应用的清单文件,它在Web应用中起到了至关重要的作用,定义了应用的名称、版本、图标和其它配置信息。"css"文件夹包含所有样式表文件,"unpackage"文件夹可能包含了构建应用后的文件,"fonts"文件夹存放字体文件,"js"文件夹则是包含JavaScript代码的地方。 知识点六:mui的打包和分发 mui框架支持项目的打包和分发,开发者可以使用其提供的命令行工具来打包项目,生成可以部署到服务器的静态资源。这一步通常涉及到资源的压缩、合并和优化。打包后,开发者可以将项目作为一个Web应用分发,也可以将其打包为原生应用,比如通过Cordova、PhoneGap等工具打包成可在iOS或Android设备上安装的应用。 知识点七:mui的兼容性和性能优化 mui框架对老旧设备也做了兼容性考虑,保证应用在低端设备上也有较好的性能表现。性能优化方面,mui提供了多种工具和最佳实践,例如使用懒加载、避免全局变量污染、减少DOM操作等策略来提高应用的运行速度和用户体验。 以上内容是根据标题、描述以及文件名称列表推测出的关于mui实现简单布局的知识点。开发者可以通过分析和实践上述知识点来更好地理解和运用mui框架,从而构建出高效且用户友好的移动应用界面。