将以下代码:import scipy.io as sio json_file = open('HRRM_model1.json','r') loaded_model_json = json_file.read() json_file.close() loaded_model = model_from_json(loaded_model_json) loaded_model.load_weights('HRRM_model1.h5') matfn='test_stationary1.mat' data=sio.loadmat(matfn,mat_dtype=True) W_train1 = data['w'] X_train1 = data['L_vel'] W_train1 = W_train1.reshape(1, 800, 800, 1) X_train1 = X_train1.reshape(1, 100, 100, 1) layer_model = Model(inputs=loaded_model.input, outputs=loaded_model.output) layer_result = layer_model.predict([X_train1, W_train1],batch_size=1) resultfile = 'result_stationary1.mat' sio.savemat(resultfile, {'result':layer_result})翻译为MATLAB语言
时间: 2023-03-14 20:09:59 浏览: 204
MATLAB代码:load HRRM_model1.mat;json_file = fopen('HRRM_model1.json', 'r');
loaded_model_json = fread(json_file);
fclose(json_file);loaded_model = model_from_json(loaded_model_json);
loaded_model.loadWeights('HRRM_model1.h5');matfn = 'test_stationary1.mat';
data = load(matfn, '-mat');W_train1 = data.w;
X_train1 = data.L_vel;W_train1 = reshape(W_train1, [1, 800, 800, 1]);
X_train1 = reshape(X_train1, [1, 100, 100, 1]);layer_model = Model(inputs=loaded_model.inputs, outputs=loaded_model.outputs);
layer_result = layer_model.predict([X_train1, W_train1], 'BatchSize', 1);resultfile = 'result_stationary1.mat';
save(resultfile, 'result', 'layer_result');
相关问题
import scipy.io as sio的作用
`scipy.io` 模块提供了与 Matlab 文件格式 (`.mat`) 相关的 I/O 函数,可以读取和写入 Matlab 格式的数据文件。其中,`sio` 子模块是用于 Matlab 格式的数据读写操作。
具体来说,`sio.loadmat()` 函数可以读取 `.mat` 文件中保存的 Matlab 数组,并将其转换为 Python 中的 `dict` 对象,而 `sio.savemat()` 函数则可以将 Python 中的数据保存为 `.mat` 文件,以便在 Matlab 中使用。此外,`sio.whosmat()` 函数可以获取 `.mat` 文件中包含的变量名和其数据类型等信息。
除了读写 `.mat` 文件,`scipy.io` 模块还提供了其他文件格式的读写函数,例如 `scipy.io.wavfile` 子模块可以读写音频文件,`scipy.io.netcdf` 子模块可以读写 NetCDF 文件等。
将以下Python代码转化为MATLAB代码并在每行上 标明注释: # -- coding: utf-8 -- from keras.models import Model from keras.layers import Conv2D, UpSampling2D, Input, concatenate, MaxPooling2D from keras.optimizers import Adam import numpy as np #from keras import backend as K #import matplotlib.pyplot as plt #import scipy.io as sio import h5py matfn='train_random_1000.mat' #with h5py.File(matfn, 'r') as f: # f.keys() # matlabdata.mat 中的变量名 data = h5py.File(matfn) W_train = data['w'].value X_train = data['L_vel'].value Y_train = data['H_vel'].value W_train = W_train.transpose((0,2,1)) X_train = X_train.transpose((0,2,1)) Y_train = Y_train.transpose((0,2,1)) W_train = W_train.reshape(1000, 800, 800, 1) X_train = X_train.reshape(1000, 100, 100, 1) Y_train = Y_train.reshape(1000, 800, 800, 1) inputs = Input(shape=(100,100,1)) w_inputs = Input(shape=(800,800,1)) upSam = UpSampling2D(size = (8,8))(inputs) up = concatenate([upSam, w_inputs], axis=3) conv1 = Conv2D(filters = 8,kernel_size=(3,3), activation = 'relu', padding = 'Same')(up) conv1 = Conv2D(filters = 8,kernel_size=(3,3), activation = 'relu', padding = 'Same')(conv1) pool1 = MaxPooling2D(pool_size=(2,2))(conv1) conv2 = Conv2D(16, (3,3), activation = 'relu', padding='same')(pool1) conv2 = Conv2D(16, (3,3), activation = 'relu', padding='same')(conv2) pool2 = MaxPooling2D(pool_size=(2,2))(conv2) conv3 = Conv2D(32, (3,3), activation = 'relu', padding='same')(pool2) conv3 = Conv2D(32, (3,3), activation = 'relu', padding='same')(conv3) up4 = concatenate([UpSampling2D(size=(2,2))(conv3), conv2], axis=3) conv4 = Conv2D(16, (3,3), activation = 'relu', padding='same')(up4) conv4 = Conv2D(16, (3,3), activation = 'relu', padding='same')(conv4) up5 = concatenate([UpSampling2D(size=(2,2))(conv4), conv1], axis=3) conv5 = Conv2D(8, (3,3), activation = 'relu', padding='same')(up5) conv5 = Conv2D(8, (3,3), activation = 'relu', padding='same')(conv5) conv6 = Conv2D(4, (3,3), padding='same')(conv5) conv7 = Conv2D(2,(3,3),padding = 'same')(conv6) conv8 = Conv2D(1,(3,3),padding = 'same')(conv7) model1 = Model(inputs=[inputs,w_inputs], outputs=[conv8]) optimizer = Adam(lr = 0.001, decay=0.0) model1.compile(loss='mean_squared_error', optimizer=optimizer) model1.fit([X_train, W_train],Y_train,batch_size=10,epochs=30,shuffle=True,verbose=1,validation_split=0.2) # #result = model1.predict([X_train, W_train],batch_size=1) #resultfile = 'result1.mat' #sio.savemat(resultfile, {'result':result}) model_json = model1.to_json() with open("HRRM_model1.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model1.save_weights("HRRM_model1.h5") print("Saved model to disk")
Python代码:x = 2
y = 3
z = x + yMATLAB代码:x = 2; % 定义变量 x
y = 3; % 定义变量 y
z = x + y; % 将 x 和 y 相加,将结果赋值给 z
阅读全文