fgets函数没有学过唉,可以稍微讲解一下吗?

时间: 2023-11-04 14:12:24 浏览: 30
fgets函数是C语言中用于读取字符串的函数之一,其函数原型如下: ``` char *fgets(char *str, int n, FILE *stream); ``` 其中,str是一个指向字符数组的指针,用于存储读取到的字符串;n是一个整数,表示最多读取的字符数;stream是一个指向文件的指针,用于指定要读取的文件流。 fgets函数会从指定的文件流中读取一行字符串,包括换行符,并将其存储到指定的字符数组中,直到读取到换行符、文件结束符或者达到指定的字符数为止。如果成功读取到字符串,则函数返回一个指向字符数组的指针;否则返回NULL。 使用fgets函数可以避免使用不安全的函数gets函数可能会带来的安全问题,因为fgets函数可以指定最多读取的字符数,从而避免了缓冲区溢出的问题。
相关问题

c语言自定义代码展现函数的封装+传参调用

好的,我可以为您讲解一下 C 语言中如何封装代码展现函数并进行传参调用。 首先,我们需要定义一个函数来展现我们的代码,可以取名为 `show_code`,该函数需要传入两个参数,一个是字符串类型的文件名,另一个是整型的行数。函数的定义如下: ```c void show_code(char* filename, int lines) { FILE* fp; char buffer[1024]; fp = fopen(filename, "r"); if (fp == NULL) { printf("File not found.\n"); return; } for (int i = 0; i < lines; i++) { if (fgets(buffer, 1024, fp) != NULL) { printf("%s", buffer); } else { break; } } fclose(fp); } ``` 上述代码中,我们使用了 `fopen` 函数打开指定文件,通过 `fgets` 函数读取文件内容并打印出来。需要注意的是,我们在函数内部进行了文件是否存在的判断,并且通过传入的 `lines` 参数控制了输出的行数。 接下来,我们可以在主函数中调用这个函数,并传入相应的参数: ```c int main() { char filename[] = "test.c"; int lines = 10; show_code(filename, lines); return 0; } ``` 这样,我们就完成了代码展现函数的封装并进行了传参调用。当然,您可以根据实际需求修改代码展现函数的具体实现以及传入的参数类型和数量。

基于Linux的网络聊天程序的完整代码及过程讲解。

好的,以下是基于 Linux 的网络聊天程序的完整代码及过程讲解。本程序使用 C 语言编写,基于 TCP 协议实现,可以实现多人在线聊天的功能。 1. 创建服务器端程序 首先,我们需要创建服务器端程序。服务器端程序的主要功能是监听客户端的连接请求,接受客户端的消息,并广播给所有连接的客户端。 服务器端程序的代码如下: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/socket.h> #include <arpa/inet.h> #define BUF_SIZE 1024 #define MAX_CLNT 256 void error_handling(char *message); void remove_client(int client_sockfd, int *client_cnt, int *client_socks); int main(int argc, char *argv[]) { int server_sockfd, client_sockfd; struct sockaddr_in server_addr, client_addr; socklen_t client_addr_size; char message[BUF_SIZE]; int client_socks[MAX_CLNT]; int client_cnt = 0; int i, j, str_len; if (argc != 2) { printf("Usage: %s <port>\n", argv[0]); exit(1); } server_sockfd = socket(AF_INET, SOCK_STREAM, 0); if (server_sockfd == -1) error_handling("socket() error"); memset(&server_addr, 0, sizeof(server_addr)); server_addr.sin_family = AF_INET; server_addr.sin_addr.s_addr = htonl(INADDR_ANY); server_addr.sin_port = htons(atoi(argv[1])); if (bind(server_sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr)) == -1) error_handling("bind() error"); if (listen(server_sockfd, 5) == -1) error_handling("listen() error"); printf("Waiting for clients...\n"); while (1) { client_addr_size = sizeof(client_addr); client_sockfd = accept(server_sockfd, (struct sockaddr*)&client_addr, &client_addr_size); if (client_sockfd == -1) error_handling("accept() error"); client_socks[client_cnt++] = client_sockfd; printf("Client %d connected.\n", client_sockfd); while ((str_len = read(client_sockfd, message, BUF_SIZE)) != 0) { message[str_len] = '\0'; printf("Received message from client %d: %s\n", client_sockfd, message); for (i = 0; i < client_cnt; i++) write(client_socks[i], message, str_len); if (strcmp(message, "quit\n") == 0) { remove_client(client_sockfd, &client_cnt, client_socks); break; } } } close(server_sockfd); return 0; } void error_handling(char *message) { perror(message); exit(1); } void remove_client(int client_sockfd, int *client_cnt, int *client_socks) { int i, j; close(client_sockfd); for (i = 0; i < *client_cnt; i++) { if (client_sockfd == client_socks[i]) { for (j = i; j < (*client_cnt - 1); j++) client_socks[j] = client_socks[j+1]; break; } } (*client_cnt)--; printf("Client %d disconnected.\n", client_sockfd); } ``` 在上面的代码中,我们创建了一个服务器套接字(server_sockfd),并将其绑定到指定的端口上。然后,我们通过调用 listen 函数,让服务器端开始监听客户端的连接请求。 在主循环中,我们通过调用 accept 函数来等待客户端的连接请求。如果有新的客户端连接请求到达,我们就创建一个新的客户端套接字(client_sockfd),并将其存储到 client_socks 数组中。 接着,我们通过调用 read 函数来接收客户端发送的消息,并将其广播给所有连接的客户端。如果客户端发送了 "quit" 消息,我们就将其从 client_socks 数组中删除,并关闭客户端套接字。 2. 创建客户端程序 接下来,我们需要创建客户端程序。客户端程序的主要功能是连接到服务器端,并将用户输入的消息发送给服务器端。 客户端程序的代码如下: ```c #include <stdio.h> #include <stdlib.h> #include <string.h> #include <unistd.h> #include <sys/socket.h> #include <arpa/inet.h> #include <pthread.h> #define BUF_SIZE 1024 void *send_msg(void *arg); void *recv_msg(void *arg); void error_handling(char *message); int main(int argc, char *argv[]) { int sockfd; struct sockaddr_in server_addr; pthread_t send_thread, recv_thread; void *thread_result; char message[BUF_SIZE]; if (argc != 3) { printf("Usage: %s <IP> <port>\n", argv[0]); exit(1); } sockfd = socket(AF_INET, SOCK_STREAM, 0); if (sockfd == -1) error_handling("socket() error"); memset(&server_addr, 0, sizeof(server_addr)); server_addr.sin_family = AF_INET; server_addr.sin_addr.s_addr = inet_addr(argv[1]); server_addr.sin_port = htons(atoi(argv[2])); if (connect(sockfd, (struct sockaddr*)&server_addr, sizeof(server_addr)) == -1) error_handling("connect() error"); printf("Connected to server.\n"); pthread_create(&send_thread, NULL, send_msg, (void*)&sockfd); pthread_create(&recv_thread, NULL, recv_msg, (void*)&sockfd); pthread_join(send_thread, &thread_result); pthread_join(recv_thread, &thread_result); close(sockfd); return 0; } void *send_msg(void *arg) { int sockfd = *((int*)arg); char message[BUF_SIZE]; while (1) { fgets(message, BUF_SIZE, stdin); write(sockfd, message, strlen(message)); if (strcmp(message, "quit\n") == 0) break; } return NULL; } void *recv_msg(void *arg) { int sockfd = *((int*)arg); char message[BUF_SIZE]; int str_len; while (1) { str_len = read(sockfd, message, BUF_SIZE-1); if (str_len == -1) return (void*)-1; message[str_len] = '\0'; printf("%s", message); } return NULL; } void error_handling(char *message) { perror(message); exit(1); } ``` 在上面的代码中,我们创建了一个客户端套接字(sockfd),并使用 connect 函数连接到指定的服务器端。 然后,我们创建了两个线程,一个用于发送用户输入的消息,另一个用于接收服务器端发送的消息。 在发送消息的线程中,我们通过调用 write 函数将用户输入的消息发送给服务器端。如果用户输入了 "quit" 消息,我们就退出发送消息的线程。 在接收消息的线程中,我们通过调用 read 函数来接收服务器端发送的消息,并将其输出到控制台。 3. 编译和运行程序 将上面的服务器端程序和客户端程序保存到两个不同的文件中,比如 server.c 和 client.c。然后,我们可以使用 gcc 编译器将其编译为可执行文件: ``` $ gcc -o server server.c $ gcc -o client client.c -lpthread ``` 接着,我们可以先运行服务器端程序: ``` $ ./server <port> ``` 其中,<port> 是要绑定的端口号。 然后,在另一个终端中运行客户端程序: ``` $ ./client <IP> <port> ``` 其中,<IP> 是服务器端的 IP 地址,<port> 是服务器端绑定的端口号。 现在,你可以在客户端程序中输入消息,然后在服务器端程序的控制台中看到相应的输出。当你输入 "quit" 消息时,客户端程序会退出。

相关推荐

最新推荐

recommend-type

详解C语言gets()函数与它的替代者fgets()函数

主要介绍了详解C语言gets()函数与它的替代者fgets()函数的相关资料,非常不错,具有参考借鉴价值,需要的朋友可以参考下
recommend-type

藏经阁-应用多活技术白皮书-40.pdf

本资源是一份关于“应用多活技术”的专业白皮书,深入探讨了在云计算环境下,企业如何应对灾难恢复和容灾需求。它首先阐述了在数字化转型过程中,容灾已成为企业上云和使用云服务的基本要求,以保障业务连续性和数据安全性。随着云计算的普及,灾备容灾虽然曾经是关键策略,但其主要依赖于数据级别的备份和恢复,存在数据延迟恢复、高成本以及扩展性受限等问题。 应用多活(Application High Availability,简称AH)作为一种以应用为中心的云原生容灾架构,被提出以克服传统灾备的局限。它强调的是业务逻辑层面的冗余和一致性,能在面对各种故障时提供快速切换,确保服务不间断。白皮书中详细介绍了应用多活的概念,包括其优势,如提高业务连续性、降低风险、减少停机时间等。 阿里巴巴作为全球领先的科技公司,分享了其在应用多活技术上的实践历程,从早期集团阶段到云化阶段的演进,展示了企业在实际操作中的策略和经验。白皮书还涵盖了不同场景下的应用多活架构,如同城、异地以及混合云环境,深入剖析了相关的技术实现、设计标准和解决方案。 技术分析部分,详细解析了应用多活所涉及的技术课题,如解决的技术问题、当前的研究状况,以及如何设计满足高可用性的系统。此外,从应用层的接入网关、微服务组件和消息组件,到数据层和云平台层面的技术原理,都进行了详尽的阐述。 管理策略方面,讨论了应用多活的投入产出比,如何平衡成本和收益,以及如何通过能力保鲜保持系统的高效运行。实践案例部分列举了不同行业的成功应用案例,以便读者了解实际应用场景的效果。 最后,白皮书展望了未来趋势,如混合云多活的重要性、应用多活作为云原生容灾新标准的地位、分布式云和AIOps对多活的推动,以及在多云多核心架构中的应用。附录则提供了必要的名词术语解释,帮助读者更好地理解全文内容。 这份白皮书为企业提供了全面而深入的应用多活技术指南,对于任何寻求在云计算时代提升业务韧性的组织来说,都是宝贵的参考资源。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB矩阵方程求解与机器学习:在机器学习算法中的应用

![matlab求解矩阵方程](https://img-blog.csdnimg.cn/041ee8c2bfa4457c985aa94731668d73.png) # 1. MATLAB矩阵方程求解基础** MATLAB中矩阵方程求解是解决线性方程组和矩阵方程的关键技术。本文将介绍MATLAB矩阵方程求解的基础知识,包括矩阵方程的定义、求解方法和MATLAB中常用的求解函数。 矩阵方程一般形式为Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。求解矩阵方程的过程就是求解x的值。MATLAB提供了多种求解矩阵方程的函数,如solve、inv和lu等。这些函数基于不同的算法,如LU分解
recommend-type

触发el-menu-item事件获取的event对象

触发`el-menu-item`事件时,会自动传入一个`event`对象作为参数,你可以通过该对象获取触发事件的具体信息,例如触发的元素、鼠标位置、键盘按键等。具体可以通过以下方式获取该对象的属性: 1. `event.target`:获取触发事件的目标元素,即`el-menu-item`元素本身。 2. `event.currentTarget`:获取绑定事件的元素,即包含`el-menu-item`元素的`el-menu`组件。 3. `event.key`:获取触发事件时按下的键盘按键。 4. `event.clientX`和`event.clientY`:获取触发事件时鼠标的横纵坐标
recommend-type

藏经阁-阿里云计算巢加速器:让优秀的软件生于云、长于云-90.pdf

阿里云计算巢加速器是阿里云在2022年8月飞天技术峰会上推出的一项重要举措,旨在支持和服务于企业服务领域的创新企业。通过这个平台,阿里云致力于构建一个开放的生态系统,帮助软件企业实现从云端诞生并持续成长,增强其竞争力。该加速器的核心价值在于提供1对1的技术专家支持,确保ISV(独立软件供应商)合作伙伴能获得与阿里云产品同等的技术能力,从而保障用户体验的一致性。此外,入选的ISV还将享有快速在钉钉和云市场上线的绿色通道,以及与行业客户和投资机构的对接机会,以加速业务发展。 活动期间,包括百奥利盟、极智嘉、EMQ、KodeRover、MemVerge等30家企业成为首批计算巢加速器成员,与阿里云、钉钉以及投资界专家共同探讨了技术进步、产品融合、战略规划和资本市场的关键议题。通过这次合作,企业可以借助阿里云的丰富资源和深厚技术实力,应对数字化转型中的挑战,比如精准医疗中的数据处理加速、物流智慧化的升级、数字孪生的普及和云原生图数据库的构建。 阿里云计算巢加速器不仅是一个技术支持平台,也是企业成长的催化剂。它通过举办类似2023年2月的集结活动,展示了如何通过云计算生态的力量,帮助企业在激烈的竞争中找到自己的定位,实现可持续发展。参与其中的优秀企业如神策和ONES等,都在这个平台上得到了加速和赋能,共同推动了企业服务领域的创新与进步。总结来说,阿里云计算巢加速器是一个集技术、资源和生态支持于一体的全方位服务平台,旨在帮助企业软件产业在云端绽放光彩。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例

![MATLAB矩阵方程求解与数据分析:在数据分析中的应用与案例](https://img-blog.csdnimg.cn/img_convert/007dbf114cd10afca3ca66b45196c658.png) # 1. MATLAB矩阵方程求解理论基础** MATLAB中矩阵方程求解是数值分析中一个重要的课题。矩阵方程的形式一般为`Ax = b`,其中`A`是一个系数矩阵,`x`是未知向量,`b`是常数向量。求解矩阵方程的方法有很多,包括直接求解法和迭代求解法。 直接求解法通过对系数矩阵`A`进行分解,将矩阵方程转化为求解三角形方程组或线性方程组,从而得到未知向量`x`。常见
recommend-type

abap dialog单选框画屏

在ABAP中,可以使用Dialog Programming来创建屏幕和用户界面。要创建一个ABAP Dialog单选框画屏,可以按照以下步骤进行操作: 1. 首先,在ABAP编辑器中创建一个新的屏幕画面(Screen Painter)。 2. 在屏幕画面上,选择“元素”工具栏中的“单选按钮”(Radio Button)工具。 3. 在屏幕上点击并拖动鼠标,绘制一个单选按钮的区域。 4. 在属性窗口中,为单选按钮指定一个唯一的名称和描述。 5. 可以选择设置单选按钮的默认状态(选中或未选中)。 6. 如果需要,可以在屏幕上添加其他的单选按钮。 7. 完成屏幕设计后,保存并激活屏幕画面。 在A
recommend-type

藏经阁-玩转AIGC与应用部署-92.pdf

"《藏经阁-玩转AIGC与应用部署-92》是一本专为阿里云开发者设计的电子手册,聚焦于人工智能生成内容(AIGC)在传媒、电商、影视等行业中的应用与技术探讨。作者张亦驰(怀潜)和丁小虎(脑斧),以及阿里云的AnalyticDB、函数计算FC和大数据AI技术团队,共同分享了五篇深度技术文章。 书中的内容涵盖了以下几个关键知识点: 1. AIGC基础与应用:介绍了AIGC如何作为新兴的内容生产方式,通过大模型技术提高内容生产和创新性,如基于大模型的创作工具在实际场景中的应用。 2. 大模型实战:书中详细展示了如何利用Hologres(云数据库)结合大模型,如ChatGPT,来解决商家问题,实现智能化客服。通过Hologres+大模型,商家可以更高效地获取答案,提升服务质量。 3. AnalyticDB与LLM(大语言模型):阐述了如何利用AnalyticDB(ADB)构建企业专属的AIGC Chatbot,增强企业的自动化沟通能力。 4. 生产力提升:讨论了大模型如何解放人类生产力,从理论层面揭示了AIGC从概念到实际应用的转变,展现了其在内容生产中的革新作用。 5. 云产品部署实践:提供了具体的操作指南,例如5分钟内如何使用函数计算FC部署StableDiffusion服务,以及如何通过PAI一键部署AI绘画应用,让读者能够快速上手并进行云上实践。 6. 试用与学习资源:书中还鼓励读者尝试模型在线服务PAI-EAS和函数计算FC的免费试用,以便更好地理解和运用AIGC技术。 《藏经阁》不仅是技术指南,也是AIGC入门者和进阶者的宝典,帮助读者理解AIGC在智能时代的重要性和广泛应用,引导他们探索并掌握云上技术部署的实际操作。通过阅读这本书,读者不仅能深入了解AIGC的潜力,还能掌握阿里云提供的相关云产品,推动内容生产行业的创新发展。"