怎么用c语言实现gps的卡尔曼滤波
时间: 2023-07-27 09:11:24 浏览: 100
卡尔曼滤波是一种常用于估计系统状态的方法,可以应用于GPS定位。下面提供一个简单的C语言实现GPS卡尔曼滤波的示例代码:
```c
#include <stdio.h>
#include <math.h>
#define STATE_SIZE 4
#define OBSERVATION_SIZE 2
typedef struct {
double x[STATE_SIZE];
double P[STATE_SIZE][STATE_SIZE];
} state_t;
typedef struct {
double z[OBSERVATION_SIZE];
double R[OBSERVATION_SIZE][OBSERVATION_SIZE];
} observation_t;
typedef struct {
double F[STATE_SIZE][STATE_SIZE];
double Q[STATE_SIZE][STATE_SIZE];
} model_t;
void predict(state_t *state, model_t *model) {
int i, j, k;
state_t new_state = {0};
// Predict state
for (i = 0; i < STATE_SIZE; i++) {
for (j = 0; j < STATE_SIZE; j++) {
new_state.x[i] += model->F[i][j] * state->x[j];
}
}
// Predict covariance
for (i = 0; i < STATE_SIZE; i++) {
for (j = 0; j < STATE_SIZE; j++) {
for (k = 0; k < STATE_SIZE; k++) {
new_state.P[i][j] += model->F[i][k] * state->P[k][j] * model->F[j][k];
}
new_state.P[i][j] += model->Q[i][j];
}
}
*state = new_state;
}
void update(state_t *state, observation_t *observation, model_t *model) {
int i, j, k;
double y[OBSERVATION_SIZE];
double S[OBSERVATION_SIZE][OBSERVATION_SIZE];
double K[STATE_SIZE][OBSERVATION_SIZE];
state_t new_state = {0};
// Compute innovation
for (i = 0; i < OBSERVATION_SIZE; i++) {
y[i] = observation->z[i] - state->x[i];
}
// Compute innovation covariance
for (i = 0; i < OBSERVATION_SIZE; i++) {
for (j = 0; j < OBSERVATION_SIZE; j++) {
S[i][j] = model->R[i][j];
for (k = 0; k < STATE_SIZE; k++) {
S[i][j] += model->F[i][k] * state->P[k][j] * model->F[j][k];
}
}
}
// Compute Kalman gain
for (i = 0; i < STATE_SIZE; i++) {
for (j = 0; j < OBSERVATION_SIZE; j++) {
K[i][j] = 0;
for (k = 0; k < STATE_SIZE; k++) {
K[i][j] += state->P[i][k] * model->F[j][k];
}
K[i][j] /= S[j][j];
}
}
// Update state
for (i = 0; i < STATE_SIZE; i++) {
new_state.x[i] = state->x[i];
for (j = 0; j < OBSERVATION_SIZE; j++) {
new_state.x[i] += K[i][j] * y[j];
}
}
// Update covariance
for (i = 0; i < STATE_SIZE; i++) {
for (j = 0; j < STATE_SIZE; j++) {
new_state.P[i][j] = state->P[i][j];
for (k = 0; k < OBSERVATION_SIZE; k++) {
new_state.P[i][j] -= K[i][k] * model->F[k][j] * state->P[i][k];
}
}
}
*state = new_state;
}
int main() {
double dt = 1.0; // time step (s)
double sigma_a = 0.5; // acceleration noise (m/s^2)
double sigma_p = 1.0; // position measurement noise (m)
double sigma_v = 0.1; // velocity measurement noise (m/s)
state_t state = {0};
observation_t observation = {0};
model_t model = {0};
// Set initial state
state.x[0] = 0; // position (m)
state.x[1] = 0; // velocity (m/s)
state.x[2] = 0; // acceleration (m/s^2)
state.x[3] = 0; // jerk (m/s^3)
// Set initial covariance
state.P[0][0] = sigma_p * sigma_p;
state.P[1][1] = sigma_v * sigma_v;
state.P[2][2] = sigma_a * sigma_a;
state.P[3][3] = sigma_j * sigma_j;
// Set model matrices
model.F[0][0] = 1;
model.F[0][1] = dt;
model.F[0][2] = 0.5 * dt * dt;
model.F[0][3] = 1.0 / 6.0 * dt * dt * dt;
model.F[1][1] = 1;
model.F[1][2] = dt;
model.F[1][3] = 0.5 * dt * dt;
model.F[2][2] = 1;
model.F[2][3] = dt;
model.Q[2][2] = sigma_a * sigma_a;
model.Q[3][3] = sigma_j * sigma_j;
// Set measurement noise covariance
model.R[0][0] = sigma_p * sigma_p;
model.R[1][1] = sigma_v * sigma_v;
// Simulate GPS measurements
int i, n = 10;
double t = 0;
for (i = 0; i < n; i++) {
// Simulate acceleration
state.x[2] = 0.5 * sigma_a * sigma_a * (2 * rand() / (double)RAND_MAX - 1);
// Predict state
predict(&state, &model);
// Simulate position and velocity measurements
observation.z[0] = state.x[0] + sigma_p * (2 * rand() / (double)RAND_MAX - 1);
observation.z[1] = state.x[1] + sigma_v * (2 * rand() / (double)RAND_MAX - 1);
// Update state
update(&state, &observation, &model);
// Print state estimate
printf("%f %f %f %f\n", t, state.x[0], state.x[1], state.x[2]);
// Increment time
t += dt;
}
return 0;
}
```
该代码使用了一个简单的模型来模拟GPS定位。在每个时间步长,首先通过预测模型预测下一个状态,然后使用GPS测量更新状态估计。在预测和更新步骤中,使用卡尔曼滤波来估计状态和协方差矩阵。通过不断重复这个过程,可以得到连续的状态估计值。
需要注意的是,该示例代码仅用于演示卡尔曼滤波的基本原理,实际应用中需要根据具体情况进行调整和改进。
阅读全文