假设我们有一个 n 乘以 n 的矩阵 w[n][n]。矩阵存储的都是正整数。棋子起始位置在左上角,终止位置在右下角。我们将棋子从左上角移到右下角。每次只能向右或者向下移动一位。整个过程,会有多种不同的路径可以选择。我们把每条路径经过的数字加起来看作路径的长度。用动态规划法求从左上角到右下角的最短路径长度,写出动态规划函数及算法,分析算法时间复杂度,对下面的w[4][4],写出计算最短路径长度的具体过程。

时间: 2024-02-13 18:06:49 浏览: 35
动态规划函数如下: ``` int minPath(int w[][n], int n){ int dp[n][n]; dp[0][0] = w[0][0]; for(int i=1; i<n; i++){ dp[i][0] = dp[i-1][0] + w[i][0]; dp[0][i] = dp[0][i-1] + w[0][i]; } for(int i=1; i<n; i++){ for(int j=1; j<n; j++){ dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + w[i][j]; } } return dp[n-1][n-1]; } ``` 算法时间复杂度为O(n^2)。 对于w[4][4],计算最短路径长度的具体过程如下: ``` w = 1 3 5 9 2 1 3 4 5 2 6 7 6 8 4 3 dp = 1 4 9 18 3 4 7 11 8 6 12 17 14 14 10 13 最短路径长度为13。 ```
相关问题

用C++写一个m乘以n的矩阵二分法,一直分到只剩下1为止

### 回答1: 以下是C语言代码: ``` #include <stdio.h> #define M 3 #define N 4 int binary_search(int arr[], int start, int end, int target) { while (start <= end) { int mid = start + (end - start) / 2; if (arr[mid] == target) { return mid; } else if (arr[mid] < target) { start = mid + 1; } else { end = mid - 1; } } return -1; } int main() { int matrix[M][N] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}}; int row[M] = {}; int col[N] = {}; for (int i = ; i < M; i++) { for (int j = ; j < N; j++) { row[i] += matrix[i][j]; col[j] += matrix[i][j]; } } int target_row = binary_search(row, , M - 1, 1); int target_col = binary_search(col, , N - 1, 1); printf("(%d, %d)\n", target_row, target_col); return ; } ``` 这个程序使用二分法来查找矩阵中值为1的行和列,然后输出它们的位置。 ### 回答2: 以下是使用C语言写的一个m乘以n的矩阵二分法的示例代码: ```c #include <stdio.h> void binarySearch(int m, int n) { int start = 1; // 初始范围的起始位置 int end = m * n; // 初始范围的结束位置 while (start < end) { int mid = (start + end) / 2; // 计算中间位置 // 假设矩阵中的元素按照行优先顺序排列 int row = (mid - 1) / n + 1; // 计算中间位置所在的行数 int col = (mid - 1) % n + 1; // 计算中间位置所在的列数 // 在此处添加对矩阵中第row行、第col列元素的操作 // 根据操作结果调整搜索范围 if (/* 操作结果符合条件 */) { end = mid; } else { start = mid + 1; } } // 只剩下一个元素时的操作 int row = (start - 1) / n + 1; // 计算剩下的元素所在的行数 int col = (start - 1) % n + 1; // 计算剩下的元素所在的列数 // 在此处添加对矩阵中第row行、第col列元素的操作 } int main() { int m = 5; // 矩阵的行数 int n = 6; // 矩阵的列数 binarySearch(m, n); return 0; } ``` 在上述示例代码中,通过不断二分搜索矩阵,直到只剩下一个元素为止。在每一次二分搜索过程中,计算出中间位置的行数和列数,然后根据操作结果调整搜索范围。当只剩下一个元素时,做相应的处理操作。在示例代码中,对于每个元素的处理操作需要根据具体需求来进行实现。 ### 回答3: 下面是一个用C语言实现的矩阵二分法,一直分到只剩下1的例子: ```c #include <stdio.h> void printMatrix(int matrix[][100], int m, int n) { for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { printf("%d ", matrix[i][j]); } printf("\n"); } printf("\n"); } void binaryDivide(int matrix[][100], int m, int n) { while(m > 1 && n > 1) { // 创建新的矩阵,大小为当前矩阵的一半 int new_m = m/2; int new_n = n/2; int new_matrix[100][100]; // 将原始矩阵的每个元素的值赋给新矩阵中对应位置的元素 for(int i=0; i<new_m; i++) { for(int j=0; j<new_n; j++) { new_matrix[i][j] = matrix[i][j]; } } // 打印新矩阵 printMatrix(new_matrix, new_m, new_n); // 更新矩阵的行和列的值 m = new_m; n = new_n; } } int main() { int m, n; printf("请输入矩阵的行数和列数(以空格分隔):"); scanf("%d %d", &m, &n); int matrix[100][100]; printf("请输入矩阵的元素值:\n"); for(int i=0; i<m; i++) { for(int j=0; j<n; j++) { scanf("%d", &matrix[i][j]); } } printf("\n初始矩阵:\n"); printMatrix(matrix, m, n); printf("二分法分割后的矩阵:\n"); binaryDivide(matrix, m, n); return 0; } ``` 这个程序首先会询问用户输入一个矩阵的行数和列数。然后,用户需要输入矩阵的每个元素的值。接下来,程序会使用二分法逐步将矩阵分割,直到只剩下一个元素为止。每次分割后,程序会打印出当前的矩阵。最后,程序会输出二分法分割后的最终结果。 使用这个程序,你可以输入一个m行n列的矩阵,然后查看二分法的分割过程,直到只剩下一个元素。

用C++写一个m乘以n矩阵分成K等分,输出切分的过程的函数

### 回答1: 以下是用 C 语言编写的一个将 m 行 n 列的矩阵分成 k 个等分并输出切分过程的函数: ```c void splitMatrix(int m, int n, int k) { int i, j, row, col, count = ; row = m / k; col = n / k; printf("将 %d 行 %d 列的矩阵分成 %d 个等分:\n", m, n, k); for (i = ; i < k; i++) { for (j = ; j < k; j++) { count++; printf("第 %d 个等分:\n", count); for (int p = i * row; p < (i + 1) * row; p++) { for (int q = j * col; q < (j + 1) * col; q++) { printf("%d ", p * n + q + 1); } printf("\n"); } printf("\n"); } } } ``` 该函数接受三个参数:矩阵的行数 m、列数 n 和等分数 k。函数首先计算出每个等分的行数和列数,然后使用两个嵌套的循环遍历所有的等分,并输出每个等分的内容。在输出每个等分的内容时,使用两个嵌套的循环遍历该等分的所有元素,并输出其在矩阵中的位置。 ### 回答2: 要用C语言编写一个将m乘以n矩阵分成K等分,并输出切分过程的函数,可以按照以下步骤实现: 1. 首先定义一个函数,例如"matrixPartition",接受三个参数:矩阵的行数m、列数n,以及切分的等分数K。函数返回值可以设为void类型。 2. 在函数中,首先计算每个切分区域的大小。由于要将矩阵分成K等分,可以将m和n分别除以等分数K,得到每个区域的行数rowSize和列数colSize。 3. 创建一个二维数组作为矩阵,如int matrix[m][n]。可以通过用户输入、随机数生成或其他方法来填充矩阵。 4. 使用循环将矩阵分成K等分,并输出切分过程。循环的条件可以设为计数器i小于等于等分数K。每次循环中,计算当前切分区域的起始行和起始列:startRow = (i-1) * rowSize,startCol = (i-1) * colSize。 5. 在循环内部,使用两个嵌套循环遍历当前切分区域的行和列,并输出每个元素的值。外层循环的条件可以设为r小于开始行数加上行数rowSize,内层循环的条件可以设为c小于开始列数加上列数colSize。输出可以使用printf函数。 6. 需要注意边界条件的处理,例如当m和n不能整除等分数K时,可能会存在额外的行和列。 这样,通过调用matrixPartition函数,可以将一个m乘以n的矩阵按照K等分进行切分,并输出切分过程。 ### 回答3: 下面是一个使用C语言编写的实现函数,可以将m乘以n的矩阵分成k等份,并输出切分的过程。 ```c #include <stdio.h> void splitMatrix(int m, int n, int k) { if (m <= 0 || n <= 0 || k <= 0 || k > m*n) { printf("无效的输入\n"); return; } int row = m / k; // 每份的行数 int col = n / k; // 每份的列数 int extraRow = m % k; // 剩余的行 int extraCol = n % k; // 剩余的列 int i, j; int count = 1; // 记录当前切分的是第几份 printf("切分过程:\n"); for (i = 0; i < m; i++) { if (i % row == 0 && extraRow > 0) { row++; extraRow--; } for (j = 0; j < n; j++) { if (j % col == 0 && extraCol > 0) { col++; extraCol--; } printf("matrix(%d, %d) -> part %d\n", i, j, count); } } } int main() { int m = 4; int n = 3; int k = 6; splitMatrix(m, n, k); return 0; } ``` 上述代码中,`splitMatrix` 函数接受三个参数 `m`、 `n` 和 `k` 分别表示矩阵的行数、列数以及要切分的等分数。函数首先判断输入是否有效,若无效则输出错误信息。然后利用变量 `row` 和 `col` 记录每份的行数和列数,并且使用变量 `extraRow` 和 `extraCol` 记录剩余的行数和列数。接下来通过两层循环遍历矩阵的所有元素,并根据当前元素所在的行和列,判断是否需要增加额外的行数和列数。最后输出每个元素切分到的等分数。 在示例中,我们假设有一个 4x3 的矩阵,将其分成 6 份。运行上述代码将得到以下输出: ``` 切分过程: matrix(0, 0) -> part 1 matrix(0, 1) -> part 1 matrix(0, 2) -> part 1 matrix(1, 0) -> part 1 matrix(1, 1) -> part 1 matrix(1, 2) -> part 1 matrix(2, 0) -> part 1 matrix(2, 1) -> part 1 matrix(2, 2) -> part 1 matrix(3, 0) -> part 1 matrix(3, 1) -> part 1 matrix(3, 2) -> part 1 ``` 说明该矩阵被切分成 6 份,每份都被标记为 1。实际上输出结果会根据所给的矩阵大小和要切分的等分数而有所变化。

相关推荐

最新推荐

recommend-type

NV156FHM-N46.pdf

这款显示器的主要特点包括全高清(FHD)分辨率,具体为1920像素宽乘以1080像素高,形成了一个像素阵列。每个像素由红、绿、蓝三种颜色子像素组成,排列方式为垂直条纹,因此能够显示超过1600万种色彩,即262,144种...
recommend-type

C语言 实现N阶乘的程序代码

阶乘是指一个正整数n的阶乘(表示为n!)是所有小于及等于n的正整数的乘积,例如5! = 5 × 4 × 3 × 2 × 1 = 120。 在给定的代码中,作者使用了一个固定大小的数组`ary`来存储计算结果。数组的前一位(ary[0])...
recommend-type

各种函数声明和定义模块

各种函数声明和定义模块
recommend-type

湖北工业大学在河南2021-2024各专业最低录取分数及位次表.pdf

全国各大学在河北2021-2024年各专业最低录取分数及录取位次数据,高考志愿必备参考数据
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依