R语言中,用metrics包中的brier_score函数算生存数据survicoxboost模型的
时间: 2024-02-01 07:15:32 浏览: 147
在R语言中使用metrics包中的brier_score函数计算生存数据survival::coxboost模型的Brier分数,可以按照以下步骤进行:
1. 载入所需的包和数据
```R
library(survival)
library(metrics)
data(veteran)
```
2. 拟合survival::coxboost模型
```R
set.seed(123)
fit <- coxboost(Surv(time, status) ~ ., data = veteran)
```
3. 预测生存概率
```R
probs <- predict(fit, type = "risk")
survival_probs <- exp(-probs)
```
4. 计算Brier分数
```R
y <- ifelse(veteran$status == 1, TRUE, FALSE)
brier_score(y, survival_probs)
```
其中,第三步中使用了predict函数来预测生存概率,type参数设置为"risk",表示输出风险得分。第四步中,将数据中的status变量转换为逻辑值(死亡为TRUE,否则为FALSE),并将其与预测的生存概率一起作为参数传入brier_score函数中,计算出Brier分数。
相关问题
['accuracy', 'adjusted_mutual_info_score', 'adjusted_rand_score', 'average_precision', 'balanced_accuracy', 'completeness_score', 'explained_variance', 'f1', 'f1_macro', 'f1_micro', 'f1_samples', 'f1_weighted', 'fowlkes_mallows_score', 'homogeneity_score', 'jaccard', 'jaccard_macro', 'jaccard_micro', 'jaccard_samples', 'jaccard_weighted', 'matthews_corrcoef', 'max_error', 'mutual_info_score', 'neg_brier_score', 'neg_log_loss', 'neg_mean_absolute_error', 'neg_mean_absolute_percentage_error', 'neg_mean_gamma_deviance', 'neg_mean_poisson_deviance', 'neg_mean_squared_error', 'neg_mean_squared_log_error', 'neg_median_absolute_error', 'neg_negative_likelihood_ratio', 'neg_root_mean_squared_error', 'normalized_mutual_info_score', 'positive_likelihood_ratio', 'precision', 'precision_macro', 'precision_micro', 'precision_samples', 'precision_weighted', 'r2', 'rand_score', 'recall', 'recall_macro', 'recall_micro', 'recall_samples', 'recall_weighted', 'roc_auc', 'roc_auc_ovo', 'roc_auc_ovo_weighted', 'roc_auc_ovr', 'roc_auc_ovr_weighted', 'top_k_accuracy', 'v_measure_score']哪些适合xgboost回归
对于XGBoost回归问题,以下指标适合用于评估模型性能:
- explained_variance:解释方差
- neg_mean_absolute_error:负均绝对误差
- neg_mean_squared_error:负均方误差
- neg_mean_squared_log_error:负对数均方误差
- neg_median_absolute_error:负中值绝对误差
- r2:R平方值
这些指标可以通过scikit-learn库中的相关函数来计算。例如,使用neg_mean_absolute_error函数计算负均绝对误差:
```python
from sklearn.metrics import mean_absolute_error
# 假设y_true是真实值,y_pred是模型预测值
mae = mean_absolute_error(y_true, y_pred)
neg_mae = -mae
```
你可以根据需要选择适当的指标进行评估。请注意,这些指标适用于回归问题,不适用于分类问题。
R语言中,用metrics包中的brier_score函数算生存数据surv(time,status),survivalsvm模型的BS和IBS
在R语言中,可以使用metrics包中的brier_score函数来计算生存数据的Brier Score(BS)和Integrated Brier Score(IBS)。下面是一个示例代码:
首先,我们需要使用某个生存数据集,例如survival包中的lung数据集。我们可以使用以下代码加载该数据集:
```R
library(survival)
data(lung)
```
然后,我们可以使用survfit函数来拟合Kaplan-Meier生存曲线,并使用predict函数来预测每个观测值的生存概率。
```R
# 拟合Kaplan-Meier生存曲线
fit <- survfit(Surv(time, status) ~ 1, data = lung)
# 预测每个观测值的生存概率
probs <- predict(fit, type = "response")
```
接下来,我们可以使用metrics包中的brier_score函数来计算BS和IBS。
```R
library(metrics)
# 计算BS
bs <- brier_score(lung$status, probs)
cat("Brier Score:", bs, "\n")
# 计算IBS
ibs <- integrated_brier_score(lung$time, lung$status, probs)
cat("Integrated Brier Score:", ibs, "\n")
```
注意,在计算IBS时,我们需要提供时间(lung$time)和状态(lung$status)向量,以便计算每个时间点的BS,并将其整合成IBS。
阅读全文