请在(1)处填上合适的代码。 class seq: n=0 def (1)(self): self.n+=1 return self.n def __iter__(self): return self if __name__=='__main__': s=seq() for i in range(5): print(next(s),end=' ')

时间: 2024-03-09 21:49:49 浏览: 18
请在(1)处填上合适的代码: ``` def __next__(self): return self.n ``` 完整代码如下: ``` class seq: n=0 def __next__(self): self.n+=1 return self.n def __iter__(self): return self if __name__=='__main__': s=seq() for i in range(5): print(next(s),end=' ') ``` 输出结果为:1 2 3 4 5
相关问题

class Recovery(Model): def __init__(self, hidden_dim, n_seq): self.hidden_dim=hidden_dim self.n_seq=n_seq return def build(self, input_shape): recovery = Sequential(name='Recovery') recovery = net(recovery, n_layers=3, hidden_units=self.hidden_dim, output_units=self.n_seq) return recovery

这段代码定义了一个名为Recovery的类,继承自Keras的Model类。Recovery类用于构建一个恢复模型,该模型包含多层GRU或LSTM。 Recovery类具有以下方法和属性: - __init__方法:初始化方法,接受hidden_dim和n_seq两个参数。hidden_dim指定隐藏单元的数量,n_seq指定输出序列的长度。 - build方法:构建方法,接受input_shape作为参数。在该方法中,创建一个名为recovery的Sequential模型对象,并通过调用net函数构建多层GRU或LSTM模型。n_layers参数设置为3,hidden_units设置为self.hidden_dim,output_units设置为self.n_seq。最后返回构建好的模型对象。 通过创建Recovery类的实例,你可以使用build方法来构建一个恢复模型,该模型包含多层GRU或LSTM,并且隐藏单元的数量由hidden_dim指定,输出序列的长度由n_seq指定。你可以根据需要进行调整。

优化这段代码 import heapq import numpy as np def MinTimeSlot(containerList, req, CONTAINER_SPARE): seq1 = 0 spareContainerList = [] for container in containerList: if container.appId == req.appId and container.state == CONTAINER_SPARE: seq1 += 1 heapq.heappush(spareContainerList, (-1 * container.killedTime, seq1, container)) return spareContainerList

这段代码的优化方案需要结合具体使用场景和数据规模来考虑。以下是几个可能的优化方案: 1. 使用列表推导式替代循环,可以增加代码的可读性和执行效率: ``` seq1 = 0 spareContainerList = [(-1 * container.killedTime, i, container) for i, container in enumerate(containerList) if container.appId == req.appId and container.state == CONTAINER_SPARE] heapq.heapify(spareContainerList) return spareContainerList ``` 2. 如果列表中的元素数量很大,可以考虑使用生成器表达式和堆排序算法来节省内存和提高执行速度: ``` def MinTimeSlot(containerList, req, CONTAINER_SPARE): spareContainerList = ((-1 * container.killedTime, i, container) for i, container in enumerate(containerList) if container.appId == req.appId and container.state == CONTAINER_SPARE) return heapq.nsmallest(len(spareContainerList), spareContainerList) ``` 3. 如果该函数需要频繁调用,可以将已经筛选出来的容器列表缓存起来,避免重复计算: ``` class ContainerCache: def __init__(self, containerList): self.containerDict = {} for container in containerList: if container.appId not in self.containerDict: self.containerDict[container.appId] = [] if container.state == CONTAINER_SPARE: self.containerDict[container.appId].append(container) def get_spare_containers(self, appId): return self.containerDict.get(appId, []) containerCache = ContainerCache(containerList) def MinTimeSlot(containerList, req, CONTAINER_SPARE, containerCache): seq1 = 0 spareContainerList = [] for container in containerCache.get_spare_containers(req.appId): seq1 += 1 heapq.heappush(spareContainerList, (-1 * container.killedTime, seq1, container)) return spareContainerList ```

相关推荐

将下面代码使用ConvRNN2D层来替换ConvLSTM2D层,并在模块__init__.py中创建类‘convrnn’ class Model(): def __init__(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= tf.keras.layers.ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out)

帮我为下面的代码加上注释:class SimpleDeepForest: def __init__(self, n_layers): self.n_layers = n_layers self.forest_layers = [] def fit(self, X, y): X_train = X for _ in range(self.n_layers): clf = RandomForestClassifier() clf.fit(X_train, y) self.forest_layers.append(clf) X_train = np.concatenate((X_train, clf.predict_proba(X_train)), axis=1) return self def predict(self, X): X_test = X for i in range(self.n_layers): X_test = np.concatenate((X_test, self.forest_layers[i].predict_proba(X_test)), axis=1) return self.forest_layers[-1].predict(X_test[:, :-2]) # 1. 提取序列特征(如:GC-content、序列长度等) def extract_features(fasta_file): features = [] for record in SeqIO.parse(fasta_file, "fasta"): seq = record.seq gc_content = (seq.count("G") + seq.count("C")) / len(seq) seq_len = len(seq) features.append([gc_content, seq_len]) return np.array(features) # 2. 读取相互作用数据并创建数据集 def create_dataset(rna_features, protein_features, label_file): labels = pd.read_csv(label_file, index_col=0) X = [] y = [] for i in range(labels.shape[0]): for j in range(labels.shape[1]): X.append(np.concatenate([rna_features[i], protein_features[j]])) y.append(labels.iloc[i, j]) return np.array(X), np.array(y) # 3. 调用SimpleDeepForest分类器 def optimize_deepforest(X, y): X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = SimpleDeepForest(n_layers=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) print(classification_report(y_test, y_pred)) # 4. 主函数 def main(): rna_fasta = "RNA.fasta" protein_fasta = "pro.fasta" label_file = "label.csv" rna_features = extract_features(rna_fasta) protein_features = extract_features(protein_fasta) X, y = create_dataset(rna_features, protein_features, label_file) optimize_deepforest(X, y) if __name__ == "__main__": main()

下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错: class Model(): def init(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, bn=True): d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) return d img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3)) img_B = tf.keras.layers.Input(shape=(128, 128, 3)) df = 32 lstm_out = ConvRNN2D(filters=df, kernel_size=4, padding="same")(img_A) lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out) combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B]) d1 = d_layer(combined_imgs, df)#64 d2 = d_layer(d1, df * 2)#32 d3 = d_layer(d2, df * 4)#16 d4 = d_layer(d3, df * 8)#8 validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return tf.keras.Model([img_A, img_B], validity)

下面代码在tensorflow中出现了init() missing 1 required positional argument: 'cell'报错,忽略def init(self)的错误: class Model(): def init(self): self.img_seq_shape=(10,128,128,3) self.img_shape=(128,128,3) self.train_img=dataset # self.test_img=dataset_T patch = int(128 / 2 ** 4) self.disc_patch = (patch, patch, 1) self.optimizer=tf.keras.optimizers.Adam(learning_rate=0.001) self.build_generator=self.build_generator() self.build_discriminator=self.build_discriminator() self.build_discriminator.compile(loss='binary_crossentropy', optimizer=self.optimizer, metrics=['accuracy']) self.build_generator.compile(loss='binary_crossentropy', optimizer=self.optimizer) img_seq_A = Input(shape=(10,128,128,3)) #输入图片 img_B = Input(shape=self.img_shape) #目标图片 fake_B = self.build_generator(img_seq_A) #生成的伪目标图片 self.build_discriminator.trainable = False valid = self.build_discriminator([img_seq_A, fake_B]) self.combined = tf.keras.models.Model([img_seq_A, img_B], [valid, fake_B]) self.combined.compile(loss=['binary_crossentropy', 'mse'], loss_weights=[1, 100], optimizer=self.optimizer,metrics=['accuracy']) def build_generator(self): def res_net(inputs, filters): x = inputs net = conv2d(x, filters // 2, (1, 1), 1) net = conv2d(net, filters, (3, 3), 1) net = net + x # net=tf.keras.layers.LeakyReLU(0.2)(net) return net def conv2d(inputs, filters, kernel_size, strides): x = tf.keras.layers.Conv2D(filters, kernel_size, strides, 'same')(inputs) x = tf.keras.layers.BatchNormalization()(x) x = tf.keras.layers.LeakyReLU(alpha=0.2)(x) return x d0 = tf.keras.layers.Input(shape=(10, 128, 128, 3)) out= ConvRNN2D(filters=32, kernel_size=3,padding='same')(d0) out=tf.keras.layers.Conv2D(3,1,1,'same')(out) return keras.Model(inputs=d0, outputs=out) def build_discriminator(self): def d_layer(layer_input, filters, f_size=4, bn=True): d = tf.keras.layers.Conv2D(filters, kernel_size=f_size, strides=2, padding='same')(layer_input) if bn: d = tf.keras.layers.BatchNormalization(momentum=0.8)(d) d = tf.keras.layers.LeakyReLU(alpha=0.2)(d) return d img_A = tf.keras.layers.Input(shape=(10, 128, 128, 3)) img_B = tf.keras.layers.Input(shape=(128, 128, 3)) df = 32 lstm_out = ConvRNN2D(filters=df, kernel_size=4, padding="same")(img_A) lstm_out = tf.keras.layers.LeakyReLU(alpha=0.2)(lstm_out) combined_imgs = tf.keras.layers.Concatenate(axis=-1)([lstm_out, img_B]) d1 = d_layer(combined_imgs, df)#64 d2 = d_layer(d1, df * 2)#32 d3 = d_layer(d2, df * 4)#16 d4 = d_layer(d3, df * 8)#8 validity = tf.keras.layers.Conv2D(1, kernel_size=4, strides=1, padding='same')(d4) return tf.keras.Model([img_A, img_B], validity)

class LSTM_Atten(nn.Module): """搭建Decoder结构""" def init(self, look_back, pre_len): super(LSTM_Atten, self).init() self.lstm = nn.LSTM(input_size=1, # 1个输入特征 hidden_size=128, # 隐状态h扩展为为128维 num_layers=1, # 1层LSTM batch_first=True, # 输入结构为(batch_size, seq_len, feature_size). Default: False ) self.lstmcell = nn.LSTMCell(input_size=128, hidden_size=128) self.drop = nn.Dropout(0.2) # 丢弃率 self.fc1 = nn.Linear(256, 128) self.fc2 = nn.Linear(128, 1) self.look_back = look_back self.pre_len = pre_len self.Softmax = nn.Softmax(dim=1) def forward(self, x): H, (h, c) = self.lstm(x.float(), None) # 编码 h = h.squeeze(0) c = c.squeeze(0) H_pre = torch.empty((h.shape[0], self.pre_len, 128 * 2)).to(device) for i in range(self.pre_len): # 解码 h_t, c_t = self.lstmcell(h, (h, c)) # 预测 H = torch.cat((H, h_t.unsqueeze(1)), 1) h_atten = self.Atten(H) # 获取结合了注意力的隐状态 H_pre[:, i, :] = h_atten # 记录解码器每一步的隐状态 h, c = h_t, c_t # 将当前的隐状态与细胞状态记录用于下一个时间步 return self.fc2(self.fc1(H_pre)).squeeze(2) def Atten(self, H): h = H[:, -1, :].unsqueeze(1) # [batch_size,1,128] H = H[:, -1 - self.look_back:-1, :] # [batch_size,look_back,128] atten = torch.matmul(h, H.transpose(1, 2)).transpose(1, 2) # 注意力矩阵 atten = self.Softmax(atten) atten_H = atten * H # 带有注意力的历史隐状态 atten_H = torch.sum(atten_H, dim=1).unsqueeze(1) # 按时间维度降维 return torch.cat((atten_H, h), 2).squeeze(1) 这段代码如何改能实现多特征的输入

最新推荐

recommend-type

c语言开发图书管理系统项目源码+数据+可运行程序

c语言开发图书管理系统项目源码+数据+可运行程序 主要功能有:1、以管理员或读者不同身份注册账户。2、登录、找回密码、修改密码。3、管理员:图书入库,清除库存,统计书籍数量,统计读者借书情况,在馆书籍排序,读者排序。4、读者:查看个人借阅信息,借书,还书,按书名、作者、出版社检索图书,查询全部在馆图书。
recommend-type

基于transformer的多模态脑肿瘤分割.zip

本项目旨在利用Transformer模型实现多模态脑肿瘤分割。多模态脑肿瘤分割对于脑肿瘤的诊断和治疗具有重要意义。 我们采用Transformer模型,通过分析脑部MRI、CT、PET等不同模态的医学影像数据,实现对脑肿瘤区域的自动分割。项目使用的数据集包括公开的脑肿瘤影像数据集,如BRATS、Medical Segmentation Decathlon等,并进行了预处理,包括图像增强、分割和特征提取等。 在运行环境方面,我们使用Python编程语言,基于TensorFlow、PyTorch等深度学习框架进行开发。为了提高计算效率,我们还使用了GPU加速计算。此外,我们还采用了Docker容器技术,确保实验结果的可重复性。 项目完成后,将实现对多模态脑肿瘤的快速、准确分割,为脑肿瘤的诊断和治疗提供有力支持。同时,项目成果也可应用于其他医学影像分析领域。
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Redis验证与连接:安装成功验证技巧

![Redis从入门到精通](https://img-blog.csdnimg.cn/6f39d0a2adc3456b96e804eb45032480.png) # 1. Redis安装与验证** ### 2.2 Redis验证方法 Redis验证可以通过以下方法进行: - **命令行验证:** - 打开终端,输入 `redis-cli` 命令进入 Redis 命令行。 - 输入 `ping` 命令,如果返回 "PONG",则表示 Redis 正在运行。 - **客户端验证:** - 使用 Redis 客户端(如 RedisInsight)连接到 Redis 服务器。
recommend-type

3、自定义一个函数int compareStr(char *p1, char *p2),实现两个字符串的比较。相等返回0,大于返回1,小于返回0;编写主函数main()来调用自定义函数完成测试。

下面是自定义的 `compareStr` 函数的代码实现: ```c #include <stdio.h> int compareStr(char *p1, char *p2) { while (*p1 && *p2 && (*p1 == *p2)) { p1++; p2++; } return (*p1 > *p2) - (*p1 < *p2); } int main() { char str1[100], str2[100]; int result; printf("请输入第一个字符串:");
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

Linux系统Redis安装:依赖安装与编译全攻略

![Linux系统Redis安装:依赖安装与编译全攻略](https://img-blog.csdnimg.cn/ae7b8258c74742a4918aaae0e34b0603.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBAaGFo5p2o5aSn5LuZ,size_20,color_FFFFFF,t_70,g_se,x_16) # 1.1 Redis简介 Redis(Remote Dictionary Server)是一个开源的、内存中的、键值对数据库,用于存储和
recommend-type

2.假设在某30分钟内学生到达图书馆的间隔时间服从在区间均值为5秒的指数分布(exprnd(5)),请编程产生30分钟内所有到达图书馆的学生的到达时刻,并输出到达人数;并绘制学生的到达时刻散点图(横轴为人的序号,纵轴为到达时刻;学生从序号1开始编号).

可以使用Matlab来完成这个任务。代码如下: ```matlab % 生成到达图书馆的学生的到达时刻 lambda = 1/5; % 指数分布的参数 t = 0; % 初始时刻为0 arrivals = []; % 到达时刻数组 while t < 30*60 % 30分钟 t = t + exprnd(lambda); % 生成下一个到达时刻 arrivals(end+1) = t; % 将到达时刻添加到数组中 end % 输出到达人数 num_arrivals = length(arrivals); disp(['到达人数:', num2str(num_arrival