if temporal: relative_pos_bias = self.temporal_position_bias_table[self.t_relative_coords].view(self.num_ttokens, self.num_ttokens, -1).permute(2, 0, 1).contiguous() attn = attn + relative_pos_bias.unsqueeze(0) attn = self.softmax(attn) else: relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn)
时间: 2023-06-19 13:07:25 浏览: 230
这段代码主要是实现了注意力机制中的相对位置编码,用于捕捉序列中不同位置之间的依赖关系。如果temporal为True,则使用时间维度的相对位置编码,否则使用空间维度的相对位置编码。在加入相对位置编码后,还进行了softmax操作,用于计算注意力权重。如果存在掩码,则在softmax操作前将掩码加入到注意力矩阵中。
相关问题
if temporal: relative_pos_bias = self.temporal_position_bias_table[self.t_relative_coords].view(self.num_ttokens, self.num_ttokens, -1).permute(2, 0, 1).contiguous() attn = attn + relative_pos_bias.unsqueeze(0) attn = self.softmax(attn) else: relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0)
这段代码是在实现自注意力机制中的相对位置编码,其中的temporal参数用于判断是否为时间序列数据。如果是时间序列数据,则使用时间相对位置编码表,否则使用空间相对位置编码表。在相对位置编码时,先将相对位置编码表转换为三维张量,然后根据不同的情况进行不同的相对位置编码。最后,使用softmax函数对编码后的注意力矩阵进行归一化处理。
if use_temporal: self.num_ttokens = num_ttokens self.temporal_position_bias_table = nn.Parameter(torch.zeros(2 * num_ttokens - 1, num_heads)) trunc_normal_(self.temporal_position_bias_table, std=.02) t_coords = torch.arange(num_ttokens) t_relative_coords = t_coords[:, None] - t_coords[None, :] t_relative_coords += num_ttokens - 1 t_relative_coords = t_relative_coords.view(-1) self.register_buffer("t_relative_coords", t_relative_coords)
这段代码是在定义一个Transformer模型的时候使用的,其中包含了对时间序列的处理。首先,如果use_temporal为True,则表示这个模型需要考虑时间维度的信息。num_ttokens表示时间序列的长度,temporal_position_bias_table是一个形状为(2*num_ttokens-1, num_heads)的可学习参数,用于在self-attention计算中加入时间维度的信息。trunc_normal_用于将temporal_position_bias_table进行初始化。接下来,t_coords表示时间序列的坐标,而t_relative_coords则表示时间序列中每个时间点与其他时间点之间的相对距离,t_relative_coords的形状为(num_ttokens, num_ttokens),其中每个元素都是一个相对距离值。我们将t_relative_coords的形状变为一维,以便在后续计算中使用。最后,使用register_buffer将t_relative_coords注册为一个buffer,这样它就可以在模型的前向计算中被使用。
阅读全文
相关推荐

















