from sklearn.datasets import load_iris from sklearn.decomposition import PCA import numpy as np data = load_iris() # 获取鸢尾花数据集 X = data.data # 获取特征数据,包括花萼长度、花萼宽度、花瓣长度、花瓣宽度 y = data.target # 获取标签数据,包括鸢尾花的品种K=2 # 建立PCA模型,指定降维后的维数为K model = PCA(n_components=K) # 训练模型 model.fit(X) 将以上model显示在二维平面坐标系
时间: 2024-03-09 12:44:45 浏览: 101
可以使用matplotlib库将降维后的数据在二维平面上进行可视化展示。具体实现代码如下:
```
import matplotlib.pyplot as plt
# 将数据降维到K维
X_new = model.transform(X)
# 绘制散点图
plt.scatter(X_new[:, 0], X_new[:, 1], c=y)
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.show()
```
其中,`X_new`表示降维后的数据,`X_new[:, 0]`和`X_new[:, 1]`表示降维后的前两个维度,`c=y`表示按照标签y进行着色,`plt.xlabel('PC1')`和`plt.ylabel('PC2')`分别表示x轴和y轴的标签,`plt.show()`用于显示图像。
相关问题
优化这段代码# import modules 导入模块 from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pandas as pd from sklearn import svm import numpy as np import math import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib import colors from sklearn.model_selection import train_test_split from sklearn import datasets from matplotlib.colors import ListedColormap from sklearn.svm import SVC from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedShuffleSplit,StratifiedKFold from sklearn.model_selection import GridSearchCV from sklearn.model_selection import GridSearchCV, LeaveOneOut, cross_val_predict from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn import svm from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_auc_score import math import datetime import multiprocessing as mp from sklearn.ensemble import StackingClassifier from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC import random
你可以对这段代码进行如下优化:
```python
import pandas as pd
import numpy as np
import math
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib import colors
from matplotlib.colors import ListedColormap
from sklearn.model_selection import train_test_split, StratifiedShuffleSplit, StratifiedKFold, GridSearchCV, LeaveOneOut, cross_val_predict, KFold
from sklearn.decomposition import PCA
from sklearn.svm import SVC, LinearSVC
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, StackingClassifier
from sklearn.metrics import roc_auc_score
# 导入模块
# 设置随机种子
random.seed(42)
np.random.seed(42)
# 其他代码...
```
这样做的优点是将导入的模块进行整理和分类,提高了代码的可读性。同时,设置了随机种子,保证了代码的可复现性。你可以根据需要添加其他的代码或模块。
给这些代码引入pca研究特征选择过程对不同算法分类器的影响:import numpy as np import matplotlib.pyplot as plt from sklearn.naive_bayes import GaussianNB from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from PIL import Image # 加载手写数字数据集 digits = load_digits() # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.3, random_state=42) # 使用高斯朴素贝叶斯分类器进行训练 gnb = GaussianNB() gnb.fit(X_train, y_train) # 对测试集进行预测 y_pred = gnb.predict(X_test) # 计算准确率 accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) # 预处理手写数字图片并进行预测 image = Image.open("digit.jpg").convert("L") image = image.resize((8, 8)) image = np.array(image) image = image.reshape((64,)) prediction = gnb.predict([image]) print("Prediction:", prediction[0]) # 显示手写数字图片 plt.imshow(image.reshape((8,8)), cmap="gray") plt.show()
可以使用sklearn中的PCA模块进行主成分分析。将数据进行降维处理,并选择合适的维度,然后再对分类器进行训练和预测。下面是代码示例:
```
from sklearn.decomposition import PCA
# 对训练集进行PCA降维处理
pca = PCA(n_components=0.95)
X_train = pca.fit_transform(X_train)
X_test = pca.transform(X_test)
# 使用高斯朴素贝叶斯分类器进行训练
gnb = GaussianNB()
gnb.fit(X_train, y_train)
# 对测试集进行预测
y_pred = gnb.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
# 对手写数字图片进行PCA降维处理
image = Image.open("digit.jpg").convert("L")
image = image.resize((8, 8))
image = np.array(image)
image = image.reshape((1, 64))
image = pca.transform(image)
# 进行预测
prediction = gnb.predict(image)
print("Prediction:", prediction[0])
# 显示手写数字图片
plt.imshow(np.array(image).reshape((8,8)), cmap="gray")
plt.show()
```
在上述代码中,我们设置PCA的参数n_components=0.95,表示保留原始数据的95%信息量,然后对训练集和测试集进行降维处理。接着,我们使用相同的高斯朴素贝叶斯分类器进行训练和预测。最后,对手写数字图片进行降维处理,并使用分类器进行预测。
阅读全文