fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)
时间: 2024-02-26 18:54:10 浏览: 281
这段代码的作用是实现模型的单次训练过程。
`fit_one_epoch` 函数接受多个参数,包括训练集和验证集的 DataLoader 对象 `gen` 和 `gen_val`,以及模型、损失记录器、优化器、当前 epoch 值等相关参数。
在函数内部,首先会调用 `model_train` 函数,用来设置模型的训练模式。然后,我们就可以在每个 epoch 中对训练集进行迭代。
在每个迭代中,我们会从训练集中加载一个 batch 的数据,然后将这些数据喂给模型进行训练。在训练过程中,我们会计算当前 batch 的损失,并且将损失值记录到损失记录器 `loss_history` 中。
在训练结束后,我们会对模型进行验证,以评估模型的性能。在验证过程中,我们会将验证集中的数据逐个喂给模型,然后计算模型在验证集上的损失值。同样地,我们会将验证损失值记录到损失记录器中。
最后,我们会根据预设的条件,保存当前 epoch 的模型参数,并且返回当前 epoch 的损失值。这个函数的主要作用是实现模型的单次训练过程,并且帮助我们记录和保存模型的训练和验证损失值。
相关问题
lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch) model.Unfreeze_backbone() epoch_step = num_train // batch_size epoch_step_val = num_val // batch_size if epoch_step == 0 or epoch_step_val == 0: raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。") if distributed: batch_size = batch_size // ngpus_per_node gen = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=train_sampler) gen_val = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=val_sampler) UnFreeze_flag = True if distributed: train_sampler.set_epoch(epoch) set_optimizer_lr(optimizer, lr_scheduler_func, epoch) fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank) if local_rank == 0: loss_history.writer.close() 转为伪代码
lr_scheduler_func = get_lr_scheduler(lr_decay_type, Init_lr_fit, Min_lr_fit, UnFreeze_Epoch)
model.Unfreeze_backbone()
epoch_step = num_train // batch_size
epoch_step_val = num_val // batch_size
if epoch_step == 0 or epoch_step_val == 0:
raise ValueError("数据集过小,无法继续进行训练,请扩充数据集。")
if distributed:
batch_size = batch_size // ngpus_per_node
gen = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=train_sampler)
gen_val = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=val_sampler)
UnFreeze_flag = True
if distributed:
train_sampler.set_epoch(epoch)
set_optimizer_lr(optimizer, lr_scheduler_func, epoch)
fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)
if local_rank == 0:
loss_history.writer.close()
伪代码并不是一种具体的编程语言,而是一种算法描述语言,因此将上述代码转换为伪代码就是将其转换为类似于自然语言的算法描述。在这个过程中,可以将代码中的特定语法和语言结构替换为通用的算法表达方式,以便更清晰地表达算法的逻辑和流程。
Epoch 1/200: 0%| | 0/11 [00:00<?, ?it/s<class 'dict'>]Traceback (most recent call last): File "C:/Users/vipuser/Desktop/yolov4-pytorch-master/train.py", line 550, in <module> fit_one_epoch(model_train, model, yolo_loss, loss_history, eval_callback, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank) File "C:\Users\vipuser\Desktop\yolov4-pytorch-master\utils\utils_fit.py", line 42, in fit_one_epoch loss_value_all += loss_item TypeError: unsupported operand type(s) for +=: 'int' and 'tuple' Epoch 1/200: 0%| | 0/11 [00:26<?, ?it/s<class 'dict'>]
这个错误是由于你的代码中的`loss_value_all`变量被错误地设置为元组类型,而不是整数类型。你需要检查你的代码,找到这个变量的定义,并将其更改为整数类型。
一种可能的解决方法是在定义`loss_value_all`时,将其初始化为0,如下所示:
```python
loss_value_all = 0
```
然后,在每个批次训练时,你需要将批次损失值转换为一个标量,例如使用`.item()`方法,然后将其添加到`loss_value_all`中,如下所示:
```python
loss_value_all += loss_item.item()
```
这样就能够将批次损失值添加到`loss_value_all`变量中,而不会出现类型错误。
阅读全文