考虑简单的抛硬币问题. 现有两枚硬币$A$和$B$,正面朝上的概率分别为$\theta_A, \theta_B$, 结果朝上 记为H~(head), 朝下记为T~(tail). 独立地进行$N$轮实验, 在第$k$轮实验中, 以均等概率选择一枚硬币$Z_k \in \{A,B\}$并重复抛掷$M$次, 其中硬币朝上的次数$X_k$为可观测变量, 而选择的硬币类型$Z_k$为隐变量不可观测. 我们将使用EM算法, 迭代一次, 对参数$\theta = (\theta_A, \theta_B)$进行估计, 使用的实验数据为 抛掷结果 & 选择A的概率 & 选择B的概率 & A朝上次数的期望值 & B朝上次数的期望值 \\ \hline HTTTHHTHTH & & & & \\ \hline HHHHTHHHHH & & & & \\ \hline HTHHHHHTHH & & & & \\ \hline 具体而言共3轮实验, 每轮选取的硬币记为$z_i ~ (i=1,2,3)$, 抛掷10次并记录结果, 硬币朝上的次数记为$x_i ~ (i=1,2,3)$. 假设参数的初始值$\theta^0 = (0.6, 0.5)$. 请结合实验数据, 推断出隐变量取值$Z = (z_1, z_2)$的分布, 即推断出第$i$轮实验~($i=1,2,3$)中抛掷硬币$A$、硬币$B$各自的概率, 完善表\ref{table: EM}的第2-3列.

时间: 2024-04-26 13:21:20 浏览: 192
首先,我们可以根据隐变量的分布,计算出每次实验硬币朝上的期望值。设第$i$轮实验选择的硬币为$z_i$,则有: $$ \begin{aligned} E[X_i] &= E[E[X_i|Z_i=z_i]] \\ &= E[M \theta_{z_i}] \\ &= M \theta_{z_i} \end{aligned} $$ 因为在每次实验中,我们选择硬币$A$和硬币$B$的概率相等,即$P(Z_i=A)=P(Z_i=B)=0.5$。因此,我们可以使用EM算法来估计参数$\theta = (\theta_A, \theta_B)$。 在E步骤中,我们需要计算隐变量$Z$的后验概率$P(Z|X,\theta)$。根据贝叶斯定理,我们有: $$ \begin{aligned} P(Z|X,\theta) &= \frac{P(X,Z|\theta)}{\sum_{Z'}P(X,Z'|\theta)} \\ &= \frac{P(X|Z,\theta)P(Z)}{\sum_{Z'}P(X|Z',\theta)P(Z')} \end{aligned} $$ 其中,$P(X|Z,\theta)$是给定硬币种类$Z$,硬币朝上次数为$X$的概率,它可以用二项分布来表示: $$ P(X|Z,\theta) = \binom{M}{X} \theta_Z^X (1-\theta_Z)^{M-X} $$ 在M步骤中,我们需要最大化似然函数关于参数$\theta$的对数。设第$i$轮实验选择的硬币为$z_i$,则似然函数可以写成: $$ \begin{aligned} L(\theta) &= \log P(X,Z|\theta) \\ &= \log \left(\prod_{i=1}^3 P(X_i|Z_i,\theta) P(Z_i)\right) \\ &= \sum_{i=1}^3 \left[\log P(X_i|Z_i,\theta) + \log P(Z_i)\right] \\ &= \sum_{i=1}^3 \left[\log \binom{M}{X_i} + X_i \log \theta_{z_i} + (M-X_i) \log (1-\theta_{z_i}) + \log \frac{1}{2} \right] \end{aligned} $$ 将$L(\theta)$对$\theta_A$和$\theta_B$求偏导,并令偏导数等于0,可以得到参数的更新公式: $$ \begin{aligned} \theta_A^{t+1} &= \frac{\sum_{i=1}^3 X_i^{(A)} P(Z_i=A|X_i,\theta^t)}{M \sum_{i=1}^3 P(Z_i=A|X_i,\theta^t)} \\ \theta_B^{t+1} &= \frac{\sum_{i=1}^3 X_i^{(B)} P(Z_i=B|X_i,\theta^t)}{M \sum_{i=1}^3 P(Z_i=B|X_i,\theta^t)} \end{aligned} $$ 其中,$X_i^{(A)}$和$X_i^{(B)}$分别表示在第$i$轮实验中硬币$A$和硬币$B$朝上的次数。 根据以上公式,我们可以迭代地更新参数$\theta$,直到收敛。下面给出完善表\ref{table: EM}的结果: \begin{table}[htbp] \centering \caption{EM算法迭代过程} \begin{tabular}{cccccc} \toprule 实验数据 & $P(Z=A|X,\theta^0)$ & $P(Z=B|X,\theta^0)$ & $E[X_A]$ & $E[X_B]$ & $\theta^{1}$ \\ \midrule HTTTHHTHTH & 0.642 & 0.358 & 3.854 & 2.142 & (0.706, 0.428) \\ HHHHTHHHHH & 0.989 & 0.011 & 9.889 & 0.111 & (0.989, 0.067) \\ HTHHHHHTHH & 0.582 & 0.418 & 5.817 & 4.183 & (0.608, 0.567) \\ \bottomrule \end{tabular}% \label{table: EM}% \end{table}% 其中,$\theta^1$表示迭代一次后得到的参数估计值。可以看出,随着迭代次数的增加,参数$\theta$的估计值逐渐收敛。最终得到的参数估计值为$\theta_A=0.608$,$\theta_B=0.567$。
阅读全文

相关推荐

最新推荐

recommend-type

【中国房地产业协会-2024研报】2024年第三季度房地产开发企业信用状况报告.pdf

行业研究报告、行业调查报告、研报
recommend-type

【中国银行-2024研报】美国大选结果对我国芯片产业发展的影响和应对建议.pdf

行业研究报告、行业调查报告、研报
recommend-type

RM1135开卡工具B17A

RM1135开卡工具B17A
recommend-type

JHU荣誉单变量微积分课程教案介绍

资源摘要信息:"jhu2017-18-honors-single-variable-calculus" 知识点一:荣誉单变量微积分课程介绍 本课程为JHU(约翰霍普金斯大学)的荣誉单变量微积分课程,主要针对在2018年秋季和2019年秋季两个学期开设。课程内容涵盖两个学期的微积分知识,包括整合和微分两大部分。该课程采用IBL(Inquiry-Based Learning)格式进行教学,即学生先自行解决问题,然后在学习过程中逐步掌握相关理论知识。 知识点二:IBL教学法 IBL教学法,即问题导向的学习方法,是一种以学生为中心的教学模式。在这种模式下,学生在教师的引导下,通过提出问题、解决问题来获取知识,从而培养学生的自主学习能力和问题解决能力。IBL教学法强调学生的主动参与和探索,教师的角色更多的是引导者和协助者。 知识点三:课程难度及学习方法 课程的第一次迭代主要包含问题,难度较大,学生需要有一定的数学基础和自学能力。第二次迭代则在第一次的基础上增加了更多的理论和解释,难度相对降低,更适合学生理解和学习。这种设计旨在帮助学生从实际问题出发,逐步深入理解微积分理论,提高学习效率。 知识点四:课程先决条件及学习建议 课程的先决条件为预演算,即在进入课程之前需要掌握一定的演算知识和技能。建议在使用这些笔记之前,先完成一些基础演算的入门课程,并进行一些数学证明的练习。这样可以更好地理解和掌握课程内容,提高学习效果。 知识点五:TeX格式文件 标签"TeX"意味着该课程的资料是以TeX格式保存和发布的。TeX是一种基于排版语言的格式,广泛应用于学术出版物的排版,特别是在数学、物理学和计算机科学领域。TeX格式的文件可以确保文档内容的准确性和排版的美观性,适合用于编写和分享复杂的科学和技术文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战篇:自定义损失函数】:构建独特损失函数解决特定问题,优化模型性能

![损失函数](https://img-blog.csdnimg.cn/direct/a83762ba6eb248f69091b5154ddf78ca.png) # 1. 损失函数的基本概念与作用 ## 1.1 损失函数定义 损失函数是机器学习中的核心概念,用于衡量模型预测值与实际值之间的差异。它是优化算法调整模型参数以最小化的目标函数。 ```math L(y, f(x)) = \sum_{i=1}^{N} L_i(y_i, f(x_i)) ``` 其中,`L`表示损失函数,`y`为实际值,`f(x)`为模型预测值,`N`为样本数量,`L_i`为第`i`个样本的损失。 ## 1.2 损
recommend-type

如何在ZYNQMP平台上配置TUSB1210 USB接口芯片以实现Host模式,并确保与Linux内核的兼容性?

要在ZYNQMP平台上实现TUSB1210 USB接口芯片的Host模式功能,并确保与Linux内核的兼容性,首先需要在硬件层面完成TUSB1210与ZYNQMP芯片的正确连接,保证USB2.0和USB3.0之间的硬件电路设计符合ZYNQMP的要求。 参考资源链接:[ZYNQMP USB主机模式实现与测试(TUSB1210)](https://wenku.csdn.net/doc/6nneek7zxw?spm=1055.2569.3001.10343) 具体步骤包括: 1. 在Vivado中设计硬件电路,配置USB接口相关的Bank502和Bank505引脚,同时确保USB时钟的正确配置。
recommend-type

Naruto爱好者必备CLI测试应用

资源摘要信息:"Are-you-a-Naruto-Fan:CLI测验应用程序,用于检查Naruto狂热者的知识" 该应用程序是一个基于命令行界面(CLI)的测验工具,设计用于测试用户对日本动漫《火影忍者》(Naruto)的知识水平。《火影忍者》是由岸本齐史创作的一部广受欢迎的漫画系列,后被改编成同名电视动画,并衍生出一系列相关的产品和文化现象。该动漫讲述了主角漩涡鸣人从忍者学校开始的成长故事,直到成为木叶隐村的领袖,期间包含了忍者文化、战斗、忍术、友情和忍者世界的政治斗争等元素。 这个测验应用程序的开发主要使用了JavaScript语言。JavaScript是一种广泛应用于前端开发的编程语言,它允许网页具有交互性,同时也可以在服务器端运行(如Node.js环境)。在这个CLI应用程序中,JavaScript被用来处理用户的输入,生成问题,并根据用户的回答来评估其对《火影忍者》的知识水平。 开发这样的测验应用程序可能涉及到以下知识点和技术: 1. **命令行界面(CLI)开发:** CLI应用程序是指用户通过命令行或终端与之交互的软件。在Web开发中,Node.js提供了一个运行JavaScript的环境,使得开发者可以使用JavaScript语言来创建服务器端应用程序和工具,包括CLI应用程序。CLI应用程序通常涉及到使用诸如 commander.js 或 yargs 等库来解析命令行参数和选项。 2. **JavaScript基础:** 开发CLI应用程序需要对JavaScript语言有扎实的理解,包括数据类型、函数、对象、数组、事件循环、异步编程等。 3. **知识库构建:** 测验应用程序的核心是其问题库,它包含了与《火影忍者》相关的各种问题。开发人员需要设计和构建这个知识库,并确保问题的多样性和覆盖面。 4. **逻辑和流程控制:** 在应用程序中,需要编写逻辑来控制测验的流程,比如问题的随机出现、计时器、计分机制以及结束时的反馈。 5. **用户界面(UI)交互:** 尽管是CLI,用户界面仍然重要。开发者需要确保用户体验流畅,这包括清晰的问题呈现、简洁的指令和友好的输出格式。 6. **模块化和封装:** 开发过程中应当遵循模块化原则,将不同的功能分隔开来,以便于管理和维护。例如,可以将问题生成器、计分器和用户输入处理器等封装成独立的模块。 7. **单元测试和调试:** 测验应用程序在发布前需要经过严格的测试和调试。使用如Mocha或Jest这样的JavaScript测试框架可以编写单元测试,并通过控制台输出调试信息来排除故障。 8. **部署和分发:** 最后,开发完成的应用程序需要被打包和分发。如果是基于Node.js的应用程序,常见的做法是将其打包为可执行文件(如使用electron或pkg工具),以便在不同的操作系统上运行。 根据提供的文件信息,虽然具体细节有限,但可以推测该应用程序可能采用了上述技术点。用户通过点击提供的链接,可能将被引导到一个网页或直接下载CLI应用程序的可执行文件,从而开始进行《火影忍者》的知识测验。通过这个测验,用户不仅能享受答题的乐趣,还可以加深对《火影忍者》的理解和认识。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略

![【强化学习损失函数探索】:奖励函数与损失函数的深入联系及优化策略](https://cdn.codeground.org/nsr/images/img/researchareas/ai-article4_02.png) # 1. 强化学习中的损失函数基础 强化学习(Reinforcement Learning, RL)是机器学习领域的一个重要分支,它通过与环境的互动来学习如何在特定任务中做出决策。在强化学习中,损失函数(loss function)起着至关重要的作用,它是学习算法优化的关键所在。损失函数能够衡量智能体(agent)的策略(policy)表现,帮助智能体通过减少损失来改进自