二阶弹簧阻尼系统粒子群优化
时间: 2023-07-24 18:10:23 浏览: 96
粒子群优化
下面是二阶弹簧阻尼系统粒子群优化的Python代码示例:
```python
import numpy as np
# 定义目标函数(稳态误差)
def objective(c, k):
m = 1.0
omega = np.sqrt(k/m)
zeta = c/(2*np.sqrt(m*k))
e = 1/(1+(omega**2)*(1-zeta**2))
return e
# 定义粒子群优化函数
def pso(obj_func, dim, n_particles, n_iter, lb, ub):
# 初始化粒子群
x = np.random.uniform(lb, ub, (n_particles, dim))
v = np.zeros((n_particles, dim))
p = x.copy()
pbest = np.zeros(n_particles)
gbest = np.zeros(dim)
gbest_fit = np.inf
# 迭代优化
for i in range(n_iter):
# 更新速度和位置
r1 = np.random.rand(n_particles, dim)
r2 = np.random.rand(n_particles, dim)
v = 0.5*v + 2*r1*(p-x) + 2*r2*(gbest-x)
x = x + v
# 边界处理
x = np.clip(x, lb, ub)
# 更新个体最优解和全局最优解
for j in range(n_particles):
fitness = obj_func(*x[j])
if fitness < pbest[j]:
pbest[j] = fitness
p[j] = x[j].copy()
if fitness < gbest_fit:
gbest_fit = fitness
gbest = x[j].copy()
return gbest, gbest_fit
# 调用粒子群优化函数求解最优解
c_best, k_best = pso(objective, dim=2, n_particles=50, n_iter=100, lb=0, ub=10)
print("最优解:c = {:.4f}, k = {:.4f}".format(c_best, k_best))
print("最小稳态误差:{:.4f}".format(objective(c_best, k_best)))
```
其中,objective函数定义了目标函数(稳态误差),pso函数实现了粒子群优化算法,c_best和k_best分别表示最优解的阻尼系数和弹簧劲度系数,最小稳态误差即为优化结果。
阅读全文